Abstract-We propose a novel context-dependent (CD) model for large vocabulary speech recognition (LVSR) that leverages recent advances in using deep belief networks for phone recognition. We describe a pre-trained deep neural network hidden Markov model (DNN-HMM) hybrid architecture that trains the DNN to produce a distribution over senones (tied triphone states) as its output. The deep belief network pre-training algorithm is a robust and often helpful way to initialize deep neural networks generatively that can aid in optimization and reduce generalization error. We illustrate the key components of our model, describe the procedure for applying CD-DNN-HMMs to LVSR, and analyze the effects of various modeling choices on performance. Experiments on a challenging business search dataset demonstrate that CD-DNN-HMMs can significantly outperform the conventional context-dependent Gaussian mixture model (GMM)-HMMs, with an absolute sentence accuracy improvement of 5.8% and 9.2% (or relative error reduction of 16.0% and 23.2%) over the CD-GMM-HMMs trained using the minimum phone error rate (MPE) and maximum likelihood (ML) criteria, respectively.
In this paper we propose the utterance-level Permutation Invariant Training (uPIT) technique. uPIT is a practically applicable, end-to-end, deep learning based solution for speaker independent multi-talker speech separation. Specifically, uPIT extends the recently proposed Permutation Invariant Training (PIT) technique with an utterance-level cost function, hence eliminating the need for solving an additional permutation problem during inference, which is otherwise required by frame-level PIT. We achieve this using Recurrent Neural Networks (RNNs) that, during training, minimize the utterance-level separation error, hence forcing separated frames belonging to the same speaker to be aligned to the same output stream. In practice, this allows RNNs, trained with uPIT, to separate multi-talker mixed speech without any prior knowledge of signal duration, number of speakers, speaker identity or gender.We evaluated uPIT on the WSJ0 and Danish two-and three-talker mixed-speech separation tasks and found that uPIT outperforms techniques based on Non-negative Matrix Factorization (NMF) and Computational Auditory Scene Analysis (CASA), and compares favorably with Deep Clustering (DPCL) and the Deep Attractor Network (DANet). Furthermore, we found that models trained with uPIT generalize well to unseen speakers and languages. Finally, we found that a single model, trained with uPIT, can handle both two-speaker, and three-speaker speech mixtures.
We propose a novel deep learning training criterion, named permutation invariant training (PIT), for speaker independent multi-talker speech separation, commonly known as the cocktail-party problem. Different from the multi-class regression technique and the deep clustering (DPCL) technique, our novel approach minimizes the separation error directly. This strategy effectively solves the longlasting label permutation problem, that has prevented progress on deep learning based techniques for speech separation. We evaluated PIT on the WSJ0 and Danish mixed-speech separation tasks and found that it compares favorably to non-negative matrix factorization (NMF), computational auditory scene analysis (CASA), and DPCL and generalizes well over unseen speakers and languages. Since PIT is simple to implement and can be easily integrated and combined with other advanced techniques, we believe improvements built upon PIT can eventually solve the cocktail-party problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.