In this study, in order to explore the failure mode of ZnO varistors under multiple lightning strokes, a five-pulse 8/20 μs nominal lightning current with pulse intervals of 50 ms was applied to ZnO varistors. Scanning electron microscopy (SEM) and X-ray diffractometry (XRD) were used to analyze the microstructure of the material. The failure processes of ZnO varistors caused by multiple lightning impulse currents were described. The performance changes of ZnO varistors after multiple lightning impulses were analyzed from both macro and micro perspectives. According to the results of this study’s experiments, the macroscopic failure mode of ZnO varistors after multiple lightning impulses involved the rapid deterioration of the electrical parameters with the increase of the number of impulse groups, until destruction occurred by side-corner cracking. The microstructural examination indicated that, after the multiple lightning strokes, the proportion of Bi in the crystal phases was altered, the grain size of the ZnO varistors became smaller, and the white intergranular phase (Bi-rich grain boundary layer) increased significantly. The failure mechanism was thermal damage and grain boundary structure damage caused by temperature gradient thermal stress, generated by multiple lightning currents.
In this study, in order to study the effect of multi-pulse waveform parameters on the aging characteristics of ZnO varistor, the aging rate and surface temperature rise of ZnO varistor under the impact of multi-pulse current were analyzed. The number of pulses and the pulse interval under multiple pulses play a decisive role in the aging rate of ZnO varistor. The greater the number of pulses and the smaller the pulse interval, the higher the temperature rise of the ZnO varistor and the faster the aging rate, the more likely to be failure and damage. The surface temperature distribution of the ZnO varistor under multi-pulse is not uniform, and the more pulses, the more uneven the temperature distribution, but the surface temperature rise has a nonlinear relationship with the number of pulses. The relationship between pulse interval, impact times and average surface temperature rise is established. The aging mechanism of the ZnO varistor under a multi-pulse lightning stroke was revealed from the perspective of energy absorption and heat transfer modelling. The energy sustained by the ZnO varistor under multiple pulses have a nonlinear multiple relationship with the energy of the single pulse current wave at the same amplitude. The superimposed cumulative energy of the impact under multiple pulses accelerates the aging process of the ZnO varistor, and eventually produces an irreversible structural destruction.
Lightning protection for blades is one of the most important factors for the safe operation of wind turbines. In view of the differences in the designs of blade receptors, a full-scale blade receptor model was constructed on the basis of the scaling experiment of the wind turbine and electrostatic field theory. By combining the electromagnetic finite element analysis with leader discharge theory, this study analyzed and discussed the influence of the protruding height of receptors and the design of receptor types on the lightning receiving effect of the blade, and the optimum design scheme of blade receptors was proposed. According to the results of this study, the field intensity distribution on the surface of the receptor was a high-boundary and low-middle structure. The receptor easily produced an upward connection leader as the lighting junction. The electric field intensity around the receptor was substantially distorted after 4 mm protrusion, which was approximately twice the electric field intensity of a flat right-angle receptor. The convex chamfer had multiple centralized lightning stroke points compared with the convex right-angle design, thereby exhibiting better solidification and reliability at the lightning stroke area, which are conducive to protecting the blade from lightning damage. The electric field intensity of the convex fillet was similar to the chamfer, but the radius of the electric field intensity of the convex fillet was small, and the attenuation of the electric field intensity with the radius was evident. This study provides a reference for further optimization design of blade receptors.
In view of the problem that ZnO varistors are often subjected to thermal breakdown and deterioration due to lightning strikes in low-voltage power distribution systems, this article used a 8/20 µs multi-pulse surge current with a pulse time interval of 50 ms to perform shock experiments on ZnO varistors. SEM scanning electron microscope and an XRD diffractometer were used to analyze the structure of the grain boundary layer and the change of the crystalline phase material of ZnO varistor under the action of a multi-pulse current. The damage mechanism of ZnO varistor under the multi-pulse current was studied at the micro level. The results show that the average impact life of different types of ZnO varistor is significantly different. It was found that the types of trace elements and grain size in the grain boundary layer will affect the ability of ZnO varistor to withstand multi-pulse current. As the number of impulses increases, the grain structure of the ZnO varistor continues to degenerate. The unevenness of internal ion migration and the nonuniformity of the micro-grain boundary layer cause the local energy density to be too large and cause the local temperature rise to be too high, which eventually causes the internal grain boundary to melt through, and the local high temperature may cause the Bi element in the ZnO varistor to change in different crystal phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.