A new semi-interpenetrating polymer network (semi-IPN) slow-release fertilizer (SISRF) with water absorbency, based on the kaolin-g-poly(acrylic acid-co-acrylic amide) (kaolin-g-P(AA-co-AM)) network and linear urea-formaldehyde oligomers (UF), was prepared by solution polymerization. Nutrients phosphorus and potassium were supplied by adding dipotassium hydrogen phosphate during the preparation process. The structure and properties of SISRF were characterized by various characterization methods. SISRF showed excellent water absorbency of 68 g g in tap water. The slow-release behavior of nutrients and water-retention capacity of SISRF were also measured. Meanwhile, the swelling kinetics was well described by a pseudo-second-order kinetics model. Results suggested the formation of SISRF with simultaneously good slow-release and water-retention capacity, which was expected to apply in modern agriculture and horticulture.
Modified calcium bentonite (Ca-bentonite) is extensively used in engineered barrier systems (EBSs) for municipal and industrial disposal sites due to its high swelling potential and low hydraulic conductivity. However, few studies have focused on the micromechanism of hydration and swelling under the effect of inorganic chemical solution. In this study, free swell index (FSI) and the type and content of modified Ca-bentonite bound water under the inorganic chemical solution were quantitatively studied by using the free swell test and nuclear magnetic resonance (NMR). According to the results, modification of sodium and polymer significantly increases the FSI of Ca-bentonite, bringing it close to that of natural sodium bentonite. In addition, the chemical stability of polymer-modified bentonite is significantly higher than that of sodium-modified bentonite but less than that of natural Na-bentonite. The FSI of modified Ca-bentonite decreases with the increase of cation valence and ionic strength. T2 distribution curves of the two types of modified bentonite are three-peak curves. With the increase of ionic strength, the content of total water and permeated hydrated water (accounting for 69%–95%) in bentonite decreases gradually, whereas the surface hydration water (accounting for 2%–31%) and free water content (accounting for 0–15%) increase. A uniform linear relationship exists between the FSI and corresponding total peak area of NMR (independent of ion valence, concentration, and bentonite type). Furthermore, a linear relationship exists between the FSI of the same type of bentonite and the T2 relaxation time. Research results can provide data and theoretical basis for quantitative analysis and mechanism of the hydration swelling of bentonite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.