Feature selection has been widely used in data mining and machine learning. Its objective is to select a minimal subset of features according to some reasonable criteria so as to solve the original task more quickly. In this article, a feature selection algorithm with local search strategy based on the forest optimization algorithm, namely FSLSFOA, is proposed. The novel local search strategy in local seeding process guarantees the quality of the feature subset in the forest. Next, the fitness function is improved, which not only considers the classification accuracy, but also considers the size of the feature subset. To avoid falling into local optimum, a novel global seeding method is attempted, which selects trees on the bottom of candidate set and gives the algorithm more diversities. Finally, FSLSFOA is compared with four feature selection methods to verify its effectiveness. Most of the results are superior to these comparative methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.