Molecular motors are at the heart of cellular machinery, and they are involved in converting chemical and light energy inputs into efficient mechanical work. From a synthetic perspective, the most advanced molecular motors are rotators that are activated by light wherein a molecular subcomponent rotates unidirectionally around an axis. The mechanical work produced by arrays of molecular motors can be used to induce a macroscopic effect. Light activation offers advantages over biological chemically activated molecular motors because one can direct precise spatiotemporal inputs while conducting reactions in the gas phase, in solution and in vacuum, while generating no chemical byproducts or waste. In this review, we describe the origins of the first light-activated rotary motors and their modes of function, the structural modifications that led to newer motor designs with optimized rotary properties at variable activation wavelengths. Presented are molecular motor attachments to surfaces, their insertion into supramolecular structures and photomodulating materials, their use in catalysis, and their action in biological environments to produce exciting new prospects for biomedicine. CONTENTS 6. Molecular Motors for Applications in Medicine 115 7. Outlook 119 Author Information 120 Corresponding Author 120 ORCID 120 Author Contributions 120 Notes 120 Biographies 120 Acknowledgments 120 References 120
Using two-photon excitation (2PE), molecular nanomachines (MNMs) are able to drill through cell membranes and kill the cells. This avoids the use of the more damaging ultraviolet (UV) light that has been used formerly to induce this nanomechanical cell-killing effect. Since 2PE is inherently confocal, enormous precision can be realized. The MNMs can be targeted to specific cell surfaces through peptide addends. Further, the efficacy was verified through controlled opening of synthetic bilayer vesicles using the 2PE excitation of MNM that had been trapped within the vesicles.
The increasing occurrence of antibiotic-resistant bacteria and the dwindling antibiotic research and development pipeline have created a pressing global health crisis. Here, we report the discovery of a distinctive antibacterial therapy that uses visible (405 nanometers) light-activated synthetic molecular machines (MMs) to kill Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus , in minutes, vastly outpacing conventional antibiotics. MMs also rapidly eliminate persister cells and established bacterial biofilms. The antibacterial mode of action of MMs involves physical disruption of the membrane. In addition, by permeabilizing the membrane, MMs at sublethal doses potentiate the action of conventional antibiotics. Repeated exposure to antibacterial MMs is not accompanied by resistance development. Finally, therapeutic doses of MMs mitigate mortality associated with bacterial infection in an in vivo model of burn wound infection. Visible light–activated MMs represent an unconventional antibacterial mode of action by mechanical disruption at the molecular scale, not existent in nature and to which resistance development is unlikely.
Multidrug resistance in pathogenic bacteria is an increasing problem in patient care and public health. Molecular nanomachines (MNMs) have the ability to open cell membranes using nanomechanical action. We hypothesized that MNMs could be used as antibacterial agents by drilling into bacterial cell walls and increasing susceptibility of drug-resistant bacteria to recently ineffective antibiotics. We exposed extensively drug-resistant Klebsiella pneumoniae to light-activated MNMs and found that MNMs increase the susceptibility to Meropenem. MNMs with Meropenem can effectively kill K. pneumoniae that are considered Meropenem-resistant. We examined the mechanisms of MNM action using permeability assays and transmission electron microscopy, finding that MNMs disrupt the cell wall of extensively drug-resistant K. pneumoniae, exposing the bacteria to Meropenem. These observations suggest that MNMs could be used to make conventional antibiotics more efficacious against multi-drug-resistant pathogens.
Recently, synthetic molecular nanomachines (MNMs) that rotate unidirectionally in response to UV light excitation have been used to produce nanomechanical action on live cells to kill them through the drilling of holes in their cell membranes. In the work here, visible lightabsorbing MNMs are designed and synthesized to enable nanomechanical activation by 405 nm light, thereby using a wavelength of light that is less phototoxic than the previously employed UV wavelengths. Visible-light absorbing MNMs that kill pancreatic cancer cells upon response TOC abstractVisible-light absorbing molecular nanomachines (MNMs) that kill pancreatic cancer cells upon response to light activation are demonstrated. MNMs do not kill the cancer cells by the photothermal effect when used at low optical density. In addition, MNMs suppress the formation of reactive oxygen species, leaving nanomechanical action as the most plausible working mechanism for cell killing under the experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.