Real-time human intent recognition is important for controlling low-limb wearable robots. In this paper, to achieve continuous and precise recognition results on different terrains, we propose a real-time training and recognition method for six locomotion modes including standing, level ground walking, ramp ascending, ramp descending, stair ascending and stair descending. A locomotion recognition system is designed for the real-time recognition purpose with an embedded BPNN-based algorithm. A wearable powered orthosis integrated with this system and two inertial measurement units is used as the experimental setup to evaluate the performance of the designed method while providing hip assistance. Experiments including on-board training and real-time recognition parts are carried out on three able-bodied subjects. The overall recognition accuracies of six locomotion modes based on subject-dependent models are 98.43% and 98.03% respectively, with the wearable orthosis in two different assistance strategies. The cost time of recognition decision delivered to the orthosis is about 0.9[Formula: see text]ms. Experimental results show an effective and promising performance of the proposed method to realize real-time training and recognition for future control of low-limb wearable robots assisting users on different terrains.
This paper presents the first model for time normalization trained on the SCATE corpus. In the SCATE schema, time expressions are annotated as a semantic composition of time entities. This novel schema favors machine learning approaches, as it can be viewed as a semantic parsing task. In this work, we propose a character level multi-output neural network that outperforms previous state-of-the-art built on the TimeML schema. To compare predictions of systems that follow both SCATE and TimeML, we present a new scoring metric for time intervals. We also apply this new metric to carry out a comparative analysis of the annotations of both schemes in the same corpus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.