L-tryptophan (Trp) is widely used in food and feed enforcement to play an important role in biological processes. Various metabolites of Trp perform its potent function. The indole pyruvate pathway is one of the main pathways of Trp metabolism in the gut microbiota, providing numerous indole-derivatives, which can modulate intestinal homeostasis and mucosal immunity by activating the aryl hydrocarbon receptor (AHR) signaling pathway. In this study, we constructed an IL4I1-overexpressed 293T cell line and found that IL4I1 can catalyze Trp to produce indole-3-acetic acid (IAA) and indole-3-carboxaldehyde (IAld). Moreover, both IAA and IAld are accumulated in dendritic cells (DCs) and can stimulate the expression of CYP1A1. Our results demonstrate the existence of the indole pyruvate pathway in host cells with IL4I1 as the key enzyme. The IL4I1-mediated Trp metabolism implies the role of dietary impact on immunity.
Field investigations on perfluoroalkyl acid (PFAA) levels in various environmental matrixes were reported, but there is still a lack of PFAA level data for agricultural environments, especially agricultural producing areas, so we collected soil, irrigation water and agricultural product samples from agricultural producing areas in the provinces of Liaoning, Shandong and Sichuan in China. The background pollution from instruments was removed and C4–C18 PFAAs were detected by LC-MS/MS. The concentrations of PFAAs in the top and deep layers of soil were compared, and the levels of PFAAs in different agricultural environments (greenhouses and open agriculture) were analyzed. We found the order of PFAA levels by province was Shandong > Liaoning > Sichuan. A descending trend of PFAA levels from top to deep soil and open to greenhouse agriculture was shown and perfluorobutanoic acid (PFBA) was considered as a marker for source analysis. Bean vegetables contribute highly to the overall PFAA load in vegetables. A significant correlation was shown between irrigation water and agricultural products. The EDI (estimated daily intake) from vegetables should be of concern in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.