The lack of resistant source has greatly restrained resistance breeding of rapeseed (Brassica napus, AACC) against Sclerotinia sclerotiorum which causes severe yield losses in rapeseed production all over the world. Recently, several wild Brassica oleracea accessions (CC) with high level of resistance have been identified (Mei et al. in Euphytica 177:393-400, 2011), bringing a new hope to improve Sclerotinia resistance of rapeseed. To map quantitative trait loci (QTL) for Sclerotinia resistance from wild B. oleracea, an F2 population consisting of 149 genotypes, with several clones of each genotypes, was developed from one F1 individual derived from the cross between a resistant accession of wild B. oleracea (B. incana) and a susceptible accession of cultivated B. oleracea var. alboglabra. The F2 population was evaluated for Sclerotinia reaction in 2009 and 2010 under controlled condition. Significant differences among genotypes and high heritability for leaf and stem reaction indicated that genetic components accounted for a large portion of the phenotypic variance. A total of 12 QTL for leaf resistance and six QTL for stem resistance were identified in 2 years, each explaining 2.2-28.4 % of the phenotypic variation. The combined effect of alleles from wild B. oleracea reduced the relative susceptibility by 22.5 % in leaves and 15 % in stems on average over 2 years. A 12.8-cM genetic region on chromosome C09 of B. oleracea consisting of two major QTL intervals for both leaf and stem resistance was assigned into a 2.7-Mb genomic region on chromosome A09 of B. rapa, harboring about 30 putative resistance-related genes. Significant negative corrections were found between flowering time and relative susceptibility of leaf and stem. The association of flowering time with Sclerotinia resistance is discussed.
Two kinds of core-shell structured multifunctional nanocarriers of gold nanoclusters (Au NCs) as core and folate (FA)-conjugated amphiphilic hyperbranched block copolymer as shell based on poly(L-lactide) (PLA) inner arm and FA-conjugated sulfated polysaccharide (GPPS-FA) outer arm (Au NCs-PLA-GPPS-FA) were synthesized for targeted anticancer drug delivery. The structure and properties of Au NCs-PLA-GPPS-FA copolymers were characterized and determined by ¹H NMR spectrum, FT-IR spectra, dynamic light scattering (DLS), fluorescence spectroscopy, and transmission electron microscopic (TEM) analyses. The anticancer drug, camptothecin (CPT) was used as a hydrophobic model anticancer drug. In vitro, two kinds of the nanocarriers presented a relatively rapid release in the first stage (up to 1 h) followed by a sustained release period (up to 15 h), and then reached a plateau at pH 5.3, 7.4, and 9.6. The release results indicated that CPT release from two kinds of the nanocarriers at pH 9.6 was much greater than that at both pH 5.3 and 7.4. The cytotoxicity studies showed that the CPT-loaded nanocarriers provided high anticancer activity against Hela cells. Furthermore, nanocarriers gained specificity to target some cancer cells because of the enhanced cell uptake mediated by FA moiety. The fluorescent images studies showed that the nanocarriers could track at the cellular level for advance therapy. The results indicated that the Au NCs-PLA-GPPS-FA copolymers not only had great potential as tumor-targeted drug delivery carrier, but also had an assistant role in the treatment of cancer.
Some previous reports have suggested that hypertension is a risk factor for dementia and cognitive impairments. Using behavioral data from 1007 elderly human subjects (405 hypertensive patients) of Han ethnicity from Beijing, China, the present study aimed to assess the effects of hypertension on cognitive performance and explore related neuronal changes via advanced resting-state functional magnetic resonance imaging and diffusion tensor imaging data from 84 of these subjects (44 hypertensive patients). Cognitively, we found that patients with hypertension showed decreased executive functions and attention compared with those with normotension in the large sample. In magnetic resonance imaging scan sample, using independent component analysis to examine the functional connectivity difference between the two groups, we found that the frontoparietal networks in the hypertensive group exhibited altered patterns compared with the control group, mainly in the inferior parietal lobe, left inferior frontal lobe, and precuneus. Using tract-based spatial statistics to investigate the between-group structural difference, we found that the hypertensive group showed significantly reduced integrity of white matter in the bilateral superior longitudinal fasciculus. Importantly, using the mediation analysis, we found that the functional connectivity of the frontoparietal networks mediates the impact of white matter on executive function in the hypertensive group. The results demonstrate that hypertension targets a specific pattern of cognitive decline, possibly due to deficits in the white matter and functional connectivity in frontal and parietal lobes. Our findings highlight the importance of brain protection in hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.