Soil moisture (SM) is an important variable in mediating the land-atmosphere interactions. Earth System Models (ESMs) are the key tools for predicting the response of SM to future climate change. Many ESMs provide outputs for SM; however, the estimated SM accuracy from different ESMs varies geographically as each ESM has its advantages and limitations. This study aimed to develop a merged SM product with improved accuracy and spatial resolution in China for 2015-2100 through data fusion of 25 ESMs with a deep-learning (DL) method. A DL model that can simultaneously perform data fusion and spatial downscaling was used to analyze SM’s future trend in China. Through the model, monthly SM data in four future scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) from 2015 to 2100, with a high resolution at 0.25°, was obtained. The evaluation metrics include mean absolute error (MAE), root mean square difference (RMSD), unbiased root mean square difference (ubRMSD), and coefficient of correlation (r). The evaluation results showed that our merged SM product is significantly better than each of the ESMs and the ensemble mean of all ESMs in terms of accuracy and spatial distribution. In the temporal dimension, the merged product is equivalent to the original data after deviation correction and equivalent to reconstructing the fluctuation of the whole series in a high error area. By further analyzing the spatiotemporal patterns of SM with the merged product in China, we found that northeast China will become wetter whereas South China will become drier. Northwest China and the Qinghai-Tibet Plateau would change from wetting to drying under a medium emission scenario. From the temporal scale of the results, the rate of SM variations is accelerated with time in the future under different scenarios. This study demonstrates the feasibility and effectiveness of the proposed procedure for simultaneous data fusion and spatial downscaling to generate improved SM data. The merged data have great practical and scientific implications.
Abstract. Future global temperature change would have significant effects on society and ecosystems. Earth system models (ESM) are the primary tools to explore the future climate change. However, ESMs still exist great uncertainty and often run at a coarse spatial resolution (The majority of ESMs at about 2 degree). Accurate temperature data at high spatial resolution are needed to improve our understanding of the temperature variation and for many applications. We innovatively apply the deep-learning(DL) method from the Super resolution (SR) in the computer vision to merge 31 ESMs data and the proposed method can perform data merge, bias-correction and spatial-downscaling simultaneously. The SR algorithms are designed to enhance image quality and outperform much better than the traditional methods. The CRU TS (Climate Research Unit gridded Time Series) is considered as reference data in the model training process. In order to find a suitable DL method for our work, we choose five SR methodologies made by different structures. Those models are compared based on multiple evaluation metrics (Mean square error(MSE), mean absolute error(MAE) and Pearson correlation coefficient(R)) and the optimal model is selected and used to merge the monthly historical data during 1850–1900 and monthly future scenarios data (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) during 2015–2100 at the high spatial resolution of 0.5 degree. Results showed that the merged data have considerably improved performance than any of the individual ESM data and the ensemble mean (EM) of all ESM data in terms of both spatial and temporal aspects. The MAE displays a great improvement and the spatial distribution of the MAE become larger and larger along the latitudes in north hemisphere, presenting like a ‘tertiary class echelon’ condition. The merged product also presents excellent performance when the observation data is smooth with few fluctuations in time series. Additionally, this work proves that the DL model can be transferred to deal with the data merge, bias-correction and spatial-downscaling successfully when enough training data are available. Data can be accessed at https://doi.org/10.5281/zenodo.5746632 (Wei et al., 2021).
Future global temperature change will have significant effects on society and ecosystems. Earth system models (ESM) are the primary tools to explore future climate change. However, ESMs have great uncertainty and often run at a coarse spatial resolution (usually about 2°). Accurate high‐spatial‐resolution temperature dataset are needed to improve our understanding of temperature variations and for many other applications. We apply Super resolution (SR) in computer vision using deep learning (DL) to merge 31 ESMs data. The proposed method performs data merging, bias‐correction, and spatial downscaling simultaneously. The CRU TS (Climate Research Unit gridded Time Series) data is used as reference data in the model training process. To find a suitable DL method, we select five SR methodologies with different structures. We compare the performances of the methods based on mean square error (MSE), mean absolute error (MAE) and Pearson correlation coefficient (R). The best method is used to merge the projected monthly data (1850–1900), and monthly future scenarios data (2015–2100), at the high spatial resolution of 0.5°. Results show that the merged data have considerably improved performance compared with individual ESM data and their ensemble mean (EM), both spatially and temporally. The MAE shows significant improvement; the spatial distribution of the MAE widens along the latitudes in the Northern Hemisphere. The MAE of merged data is ranging from 0.60 to 1.50, the South American (SA) has the lowest error and the Europe has the highest error. The merged product has excellent performance when the observation data is smooth with few fluctuations in the time series. This work demonstrates the applicability and effectiveness of the DL methods in data merging, bias‐correction and spatial downscaling when enough training data are available. Data can be accessed at https://doi.org/10.5281/zenodo.5746632.
A reliable estimate of the gross primary productivity (GPP) is crucial for understanding the global carbon balance and accurately assessing the ability of terrestrial ecosystems to support the sustainable development of human society. However, there are inconsistencies in variations and trends in current GPP products. To improve the estimation accuracy of GPP, a deep learning method has been adopted to merge 23 CMIP6 data to generate a monthly GPP merged product with high precision and a spatial resolution of 0.25°, covering a time range of 1850–2100 under four climate scenarios. Multi-model ensemble mean and the merged GPP (CMIP6DL GPP) have been compared, taking GLASS GPP as the benchmark. Compared with the multi-model ensemble mean, the coefficient of determination between CMIP6DL GPP and GLASS GPP was increased from 0.66 to 0.86, with the RMSD being reduced from 1.77 gCm−2d−1 to 0.77 gCm−2d−1, which significantly reduced the random error. Merged GPP can better capture long-term trends, especially in regions with dense vegetation along the southeast coast. Under the climate change scenarios, the regional average annual GPP shows an upward trend over China, and the variation trend intensifies with the increase in radiation forcing levels. The results contribute to a scientific understanding of the potential impact of climate change on GPP in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.