We propose a dielectric-based, multistaged, laser-driven electron linear accelerator structure operating in a vacuum that is capable of accelerating electrons to 1 TeV in 1 km. Our study shows that a GeV/m gradient is achievable using two 100 fs focused crossed-laser beams, repeated every 300 μm, operated at a peak power of 0.2 GW and an energy density of less than 2 J/cm2 on the accelerator structure.
Liquid scintillators are widely used as the neutrino target in neutrino experiments. The absorption and emission of different components of a ternary liquid scintillator (Linear Alkyl Benzene (LAB) as the solvent, 2,5-diphenyloxazole (PPO) as the fluor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as wavelength shifter) are studied. It is shown that the absorption of this liquid scintillator is dominant by LAB and PPO at wavelengths less than 349 nm, and the absorption by bis-MSB becomes prevalent at the wavelength larger than 349 nm. The fluorescence quantum yields, which are the key parameters to model the absorption and re-emission processes in large liquid scintillation detectors, are measured.
High speed free space optical communication (FSOC) has taken advantages of components developed for fiber-optic communication systems. Recently, with the rapid development of few-mode-fiber based fiber communication systems, few-mode-fiber components might further promote their applications in FSOC system. The coupling efficiency between free space optical beam and few-mode fibers under atmospheric turbulence effect are investigated in this paper. Both simulation and experimental results show that, compared with single-mode fiber, the coupling efficiencies for a 2-mode fiber and a 4-mode fiber are improved by ~4 dB and ~7 dB respectively in the presence of medium moderate and strong turbulence. Compared with single-mode fiber, the relative standard deviation of received power is restrained by 51% and 66% respectively with a 4-mode and 2-mode fiber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.