Driven by the emerging use cases in massive access future networks, there is a need for technological advancements and evolutions for wireless communications beyond the fifthgeneration (5G) networks. In particular, we envisage the upcoming sixth-generation (6G) networks to consist of numerous devices demanding extremely high-performance interconnections even under strenuous scenarios such as diverse mobility, extreme density, and dynamic environment. To cater for such a demand, investigation on flexible and sustainable radio access network (RAN) techniques capable of supporting highly diverse requirements and massive connectivity is of utmost importance. To this end, this paper first outlines the key driving applications for 6G, including smart city and factory, which trigger the transformation of existing RAN techniques. We then examine and provide in-depth discussions on several critical performance requirements (i.e., the level of flexibility, the support for massive interconnectivity, and energy efficiency), issues, enabling technologies, and challenges in designing 6G massive RANs. We conclude the article by providing several artificial-intelligencebased approaches to overcome future challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.