Iron-nitrogen on carbon (Fe-N/C) catalysts have emerged as promising nonprecious metal catalysts (NPMCs) for oxygen reduction reaction (ORR) in energy conversion and storage devices. It has been widely suggested that an active site structure for Fe-N/C catalysts contains Fe-N coordination. However, the preparation of high-performance Fe-N/C catalysts mostly involves a high-temperature pyrolysis step, which generates not only catalytically active Fe-N sites, but also less active large iron-based particles. Herein, we report a general "silica-protective-layer-assisted" approach that can preferentially generate the catalytically active Fe-N sites in Fe-N/C catalysts while suppressing the formation of large Fe-based particles. The catalyst preparation consisted of an adsorption of iron porphyrin precursor on carbon nanotube (CNT), silica layer overcoating, high-temperature pyrolysis, and silica layer etching, which yielded CNTs coated with thin layer of porphyrinic carbon (CNT/PC) catalysts. Temperature-controlled in situ X-ray absorption spectroscopy during the preparation of CNT/PC catalyst revealed the coordination of silica layer to stabilize the Fe-N sites. The CNT/PC catalyst contained higher density of active Fe-N sites compared to the CNT/PC prepared without silica coating. The CNT/PC showed very high ORR activity and excellent stability in alkaline media. Importantly, an alkaline anion exchange membrane fuel cell (AEMFC) with a CNT/PC-based cathode exhibited record high current and power densities among NPMC-based AEMFCs. In addition, a CNT/PC-based cathode exhibited a high volumetric current density of 320 A cm in acidic proton exchange membrane fuel cell. We further demonstrated the generality of this synthetic strategy to other carbon supports.
Monolayer MoS, among many other transition metal dichalcogenides, holds great promise for future applications in nanoelectronics and optoelectronics due to its ultrathin nature, flexibility, sizable band gap, and unique spin-valley coupled physics. However, careful study of these properties at low temperature has been hindered by an inability to achieve low-temperature Ohmic contacts to monolayer MoS, particularly at low carrier densities. In this work, we report a new contact scheme that utilizes cobalt (Co) with a monolayer of hexagonal boron nitride (h-BN) that has the following two functions: modifies the work function of Co and acts as a tunneling barrier. We measure a flat-band Schottky barrier of 16 meV, which makes thin tunnel barriers upon doping the channels, and thus achieve low-T contact resistance of 3 kΩ.μm at a carrier density of 5.3 × 10/cm. This further allows us to observe Shubnikov-de Haas oscillations in monolayer MoS at much lower carrier densities compared to previous work.
Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications.
Highly regular arrays of steps are produced on vicinal Si(111)7ϫ7 surfaces. A tilt of the surface normal from ͑111͒ toward ͑1 1 2͒ produces single steps ͑0.3 nm high and typically 15 nm apart͒. The opposite tilt toward ͑1 1 2͒ produces bunched steps with adjustable height ͑1-5 nm͒ and a spacing of 70 nm. Preparation criteria for straight edges and regular spacings are determined, taking into account the miscut angle ͑azimuthal and polar͒, annealing sequence, current direction, and applied stress.
Hexagonal boron nitride (h-BN) and graphene have emerged as promising materials for proton exchange membranes because of their high proton conductivity and chemical stability. However, the defects and grain boundaries generated during the growth and transfer of two-dimensional materials limit their practical applicability. Here, we report the fabrication of membrane electrode assemblies using large-area single-oriented AA′-stacked trilayer h-BN (3L-BN), which exhibits very few defects during the growth and transfer, as a proton exchange membrane for use in fuel cell systems. The fuel cell based on AA′-stacked 3L-BN showed a H 2 permeation current density as low as 2.69 mA cm −2 and an open circuit voltage (OCV) as high as 0.958 V; this performance is much superior to those for cells based on Nafion (3.7 mA cm −2 and 0.942 V, respectively) and single-layer h-BN (10.08 mA cm −2 and 0.894 V, respectively). Furthermore, the fuel cell with the AA′-stacked 3L-BN membrane almost maintained its original performance (OCV, maximum power density, and H 2 permeation current density) even after 100 h of an accelerated stress test at 30% RH and 90 °C, while the fuel cells with the Nafion and single-layer BN membranes exhibited severely deteriorated performances. The stability of the cell based on the AA′-stacked 3L-BN membrane was better because the membrane prevented gas crossover and suppressed the generation of reactive radicals during cell operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.