Laser induced selective photothermochemical reduction is demonstrated to locally and reversibly control the oxidation state of Cu and Cu oxide nanowires in ambient conditions without any inert gas environment. This new concept of "nanorecycling" can monolithically integrate Cu and Cu oxide nanowires by restoring oxidized Cu, considered unusable for the electrode, back to a metallic state for repetitive reuse.
Along with visual and tactile sensations, thermal sensation by temperature feeling on the skin can provide rich physical information on the environment and objects. With a simple touch of objects, relative temperature can be sensed and even objects can be differentiated with different thermal properties without any visual cue. Thus, artificially reproducing accurate/controllable thermal sensation haptic signals on human epidermis will certainly be a major research area to reconstruct a more realistic virtual reality (VR) environment. In this study, for the first time, a skin‐like, highly soft and stretchable and bi‐functional (both cold and hot sensation) thermo‐haptic device is reported for wearable VR applications with a single device structure (not separate heater and cooler). The skin‐like thermo‐haptic (STH) device can actively cool down and heat up deformable skin surfaces with instantaneous and accurate adjustment of temperature based upon a feedback control algorithm to mimic desirable thermal sensation with 230% stretchability. As a proof‐of‐concept, the STH device is integrated with a finger‐motion tracking glove to provide artificial thermal sensation information to the skin in various situations such as touching cold beer bottles and hot coffee cups in virtual space. This new type of STH device can offer potential implications for next‐generation haptic devices to provide unique thermal information for a more realistic virtual‐world field and medical thermal treatment.
Herein, a high‐performance copper nanowire (Cu NW) network (sheet resistance ≈ 17 Ω sq−1, transmittance 88%) fabricated by plasmonic‐tuned flash welding (PFW) with ultrafast interlocking and photochemical reducing is reported, which greatly enhance the mechanical and chemical stability of Cu NWs. Xenon flash spectrum is tuned in an optimized distribution (maximized light intensity at 600 nm wavelength) through modulation of electron kinetic energy in the lamp by generating drift potential for preferential photothermal interactions. High‐intensity visible light is emitted by the plasmonic‐tuned flash, which strongly improves Cu nanowelding without oxidation. Near‐infrared spectrum of the flash induced an interlocking structure of NW/polyethylene terephthalate interface by exciting Cu NW surface plasmon polaritons (SPPs), increasing adhesion of the Cu nanonetwork by 208%. In addition, ultrafast photochemical reduction of Cu NWs is accomplished in air by flash‐induced electron excitations and relevant chemical reactions. The PFW effects of localized surface plasmons and SPPs on junction welding and adhesion strengthening of Cu network are theoretically studied as physical behaviors by finite‐difference time‐domain simulations. Finally, a transparent resistive memory and a touch screen panel are demonstrated by using the flash‐induced Cu NWs, showing versatile and practical uses of PFW‐treated Cu NW electrodes for transparent flexible electronics.
Cephalopods’ extraordinary ability to hide into any background has inspired researchers to reproduce the intriguing ability to readily camouflage in the infrared (IR) and visible spectrum but this still remains as a conundrum. In this study, a multispectral imperceptible skin that enables human skin to actively blend into the background both in the IR‐visible integrated spectrum only by simple temperature control with a flexible bi‐functional device (active cooling and heating) is developed. The thermochromic layer on the outer surface of the device, which produces various colors based on device surface temperature, expands the cloaking range to the visible spectrum (thus visible‐to‐IR) and ultimately completes day‐and‐night stealth platform simply by controlling device temperature. In addition, the scalable pixelization of the device allows localized control of each autonomous pixel, enabling the artificial skin surface to adapt to the background of the sophisticated pattern with higher resolution and eventually heightening the level of imperceptibility. As this proof‐of‐concept can be directly worn and conceals the human skin in multispectral ranges, the work is expected to contribute to the development of next‐generation soft covert military wearables and perhaps a multispectral cloak that belongs to cephalopods or futuristic camouflage gadgets in the movies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.