The effects of aluminum foam (AF, average pore size of 1000 μm) on formation and growth kinetic behaviors of methane hydrate with 0.03 wt % sodium dodecyl sulfate (SDS) were investigated in a 300 cm 3 stainless steel vessel without stirring under 4.2, 6.0, and 8.3 MPa and 273.15 K. AF is a porous metal medium possessing large rough surface and excellent thermal conductivity. The experimental results demonstrated that porous AF played an acceleration role in the initial formation and further growth of methane hydrate by promoting hydrate nucleation and facilitating the removal of hydration heat. When AF was used, not only was the induction time reduced but the formation and growth were also sped up significantly, compared to conditions without it. In addition, under the above three pressures, the maximum formation rates (R f,max ) were increased by enormous times, 52% and 23%, with the help of AF, respectively. The relatively low increment of R f,max under high pressure most likely was caused by AF's own limitations (pore size). AF with smaller pore size can be selected for further study.
Objectives
To develop and validate a preoperative CT-based nomogram combined with radiomic and clinical–radiological signatures to distinguish preinvasive lesions from pulmonary invasive lesions.
Methods
This was a retrospective, diagnostic study conducted from August 1, 2018, to May 1, 2020, at three centers. Patients with a solitary pulmonary nodule were enrolled in the GDPH center and were divided into two groups (7:3) randomly: development (n = 149) and internal validation (n = 54). The SYSMH center and the ZSLC Center formed an external validation cohort of 170 patients. The least absolute shrinkage and selection operator (LASSO) algorithm and logistic regression analysis were used to feature signatures and transform them into models.
Results
The study comprised 373 individuals from three independent centers (female: 225/373, 60.3%; median [IQR] age, 57.0 [48.0–65.0] years). The AUCs for the combined radiomic signature selected from the nodular area and the perinodular area were 0.93, 0.91, and 0.90 in the three cohorts. The nomogram combining the clinical and combined radiomic signatures could accurately predict interstitial invasion in patients with a solitary pulmonary nodule (AUC, 0.94, 0.90, 0.92) in the three cohorts, respectively. The radiomic nomogram outperformed any clinical or radiomic signature in terms of clinical predictive abilities, according to a decision curve analysis and the Akaike information criteria.
Conclusions
This study demonstrated that a nomogram constructed by identified clinical–radiological signatures and combined radiomic signatures has the potential to precisely predict pathology invasiveness.
Key Points
• The radiomic signature from the perinodular area has the potential to predict pathology invasiveness of the solitary pulmonary nodule.
• The new radiomic nomogram was useful in clinical decision-making associated with personalized surgical intervention and therapeutic regimen selection in patients with early-stage non-small-cell lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.