Background. Myocarditis is one of the important causes of dilated cardiomyopathy, cardiac morbidity, and mortality worldwide. Chitosan oligosaccharides (COS) may have anti-inflammatory and cardioprotective effects on myocarditis. However, the exact molecular mechanism for the effects of functional COS on myocarditis remains unclear. Methods. Antiinflammatory activities of COS (chitobiose, chitotriose, chitotetraose, chitopentaose, chitohexaose, chitoheptaose, and chitooctaose) were measured in lipopolysaccharide-(LPS-) stimulated RAW264.7 cells. A rat model with myocarditis was established and treated with chitopentaose, chitohexaose, chitoheptaose, and chitooctaose. Serum COS were measured by using high-performance liquid chromatography (HPLC) in all rats. Myocarditis injury, the levels of reactive oxygen species (ROS), reactive nitrogen species (RNS), inflammatory factors, and apoptotic factors were also measured. Pearson's correlation coefficient test was used to explore the relationship between the levels of ROS/RNS and cardiac parameters. Results. Among all chitosan oligosaccharides, the COS > degrees of polymerization ðDPÞ 4 showed anti-inflammatory activities (the activity order was chitopentaose 4). The levels of ROS/RNS had a strong relationship with cardiac parameters. Conclusions. Chitoheptaose plays a myriad of cardioprotective roles in the myocarditis model via its antioxidant, anti-inflammatory, and antiapoptotic activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.