For the past several years, a novel dwarf disease has been observed on rice (Oryza sativa) in some regions of Guangdong Province and Hainan Province, southern China. Infected plants showed stunting, dark leaf and small enations on stem and leaf back. Typical Fijivirus viroplasma containing crystalline arrayed spherical virons approximately 70-75 nm in diameter and tubular structures were detected in ultrathin sections by an electron microscope in parenchyma phloem cells of the infected plants. The virus was transmitted to rice seedlings by white-backed planthoppers, Sogatella furcifera (Hemiptera: Delphacidae), collected in the diseased fields. Analysis of dsRNA extracts from infected plants revealed ten linear segments, which were similar to the electrophoretic profile of Rice black-streaked dwarf virus (RBSDV). RT-PCR with a single primer which matched to a linker sequence ligated to both 3′ ends of the viral genomic dsRNAs resulted in amplification of genome segments 9 (S9) and 10 (S10) cDNA products. The complete nucleotide sequences of S9 and S10 were obtained from clones of the RT-PCR amplicon exhibited characteristic properties of Fijivirus including low GC content (34.5% and 35.6%), genus conserved 5′ and 3′ termini sequences and similar genome organization. Blast searches indicated that the sequences of S9 and S10 shared 68.8%-74.9% and 67.1%-77.4% nucleotide identities with those of viruses in the Fijivirus group 2, respectively. These values were similar to those among other viruses in the Fijivirus group 2 and considerably lower than those among RBSDV isolates. Phylogenetic trees based on S9 and S10 nucleotide sequences and their putative amino acid sequences showed that this virus represented a separate branch among other Fijiviruses. The virus was also detected by a nested RT-PCR assay in corn (Zea mays), barnyard grass (Echinochloa crusgalli), Juncellus serotinus and flaccidgrass (Pennisetum flaccidum) in and/or adjacent to the infected rice fields. It is proposed that this virus be considered as a new species, Southern rice black-streaked dwarf virus, in the group 2 of the genus Fijivirus in the family Reoviridae.southern rice black-streaked dwarf virus, rice, Fijivirus, Reoviridae, genome sequence Rice black-streaked virus (RBSDV) is a species of the genus Fijivirus in the family Reoviridae [1] . It has icosahedric particles approximately 70-75 nm in diameter that contain 10 genome segments of double-stranded RNAs (dsRNA), designated as S1-S10 in increasing order of electrophoretic mobility in polyacrylamide gels. Small brown planthopper, Laodelphax striatellus, is its main natural vector, and Unkanodes sapporonus and Chilodephax albifacia can also transmit the virus with a relative low efficiency [2][3][4] . In the genus Fijivirus, 8 species, Fiji disease virus (FDV), Oat sterile dwarf virus (OSDV), Garlic dwarf virus (GDV), Nilaparvata lugens reovirus (NLRV), Mal de Río Cuarto virus (MRCV), Pangola stunt virus (PaSV), Maize rough dwarf virus (MRDV) and RBSDV were recognized [1] . Among them,
Southern rice black-streaked dwarf virus (SRBSDV), a non-enveloped icosahedral virus with a genome of 10 double-stranded RNA segments, is a novel species in the genus Fijivirus (family Reoviridae) first recognized in 2008. Rice plants infected with this virus exhibit symptoms similar to those caused by Rice black-streaked dwarf virus. Since 2009, the virus has rapidly spread and caused serious rice losses in East and Southeast Asia. Significant progress has been made in recent years in understanding this disease, especially about the functions of the viral genes, rice–virus–insect interactions, and epidemiology and control measures. The virus can be efficiently transmitted by the white-backed planthopper (WBPH, Sogatella furcifera) in a persistent circulative propagative manner but cannot be transmitted by the brown planthopper (Nilaparvata lugens) and small brown planthopper (Laodelphax striatellus). Rice, maize, Chinese sorghum (Coix lacryma-jobi) and other grass weeds can be infected via WBPH. However, only rice plays a major role in the virus infection cycle because of the vector’s preference. In Southeast Asia, WBPH is a long-distance migratory rice pest. The disease cycle can be described as follows: SRBSDV and its WBPH vector overwinter in warm tropical or sub-tropical areas; viruliferous WBPH adults carry the virus from south to north via long-distance migration in early spring, transmit the virus to rice seedlings in the newly colonized areas, and lay eggs on the infected seedlings; the next generation of WBPHs propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Several molecular and serological methods have been developed to detect SRBSDV in plant tissues and individual insects. Control measures based on protection from WBPH, including seedbed coverage, chemical seed treatments, and chemical spraying of seedlings, have proven effective in China.
A survey of cultivated hybrid sugarcane (Saccharum inter-specific hybrid) and noble sugarcane (Saccharum officinarum) in southern China for the presence of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV) and Sugarcane streak mosaic virus (SCSMV) was conducted by RT-PCR from the years 2003 to 2006. SCMV and SrMV, but not SCSMV, were found. A high incidence of SCMV and SrMV coinfection was revealed in both hybrid and noble sugarcanes. All coinfected plants showed mosaic symptom, whereas plants infected with a single virus were symptomatic or asymptomatic. It appears that virus mixtures are more virulent than single infections. The nucleotide sequences of the coat protein (CP) gene of 33 SCMV and 10 SrMV isolates from this study were compared to those of CP genes of SCMV and SrMV reported in GenBank. One hundred and seventy-three SCMV isolates, with the exception of MDB and Abaca strains, can be grouped into five groups, which include three previously known groups, the sugarcane (SCE), maize (MZ), and Thailand groups, and two newly identified groups, the noble sugarcane (NSCE) and Brazil groups. Twenty-two SrMV isolates were divided into two groups, HS (hybrid sugarcane) and NS (noble sugarcane) groups. Five out of eight SrMV hybrid isolates belonged to the HS group, and two SrMV noble isolates and three hybrid isolates were within the NS group. Interestingly, the three hybrid isolates within the NS group were isolated from hybrid sugarcane co-infected with SCMV. This indicates that SCMV helps the NS group SrMV to infect hybrid sugarcane.
In recent years, Southern rice black-streaked dwarf virus (SRBSDV), a tentative species in the genus Fijivirus (family Reoviridae), has spread rapidly and caused serious rice losses in eastern and southeastern Asia. With this virus spread, Rice ragged stunt virus (RRSV, genus Oryzavirus, family Reoviridae) became more common in southern China, usually in co-infection with the former. SRBSDV and RRSV are transmitted by two different species of planthoppers, white-backed planthopper (WBPH, Sogatella furcifera) and brown planthopper (BPH, Nilaparvata lugens), respectively, in a persistent, circulative, propagative manner. In this study, using a Y-shape olfactometer-based device, we tested the host preference of three types of macropterous WBPH adults for healthy or SRBSDV-infected rice plants. The results showed that virus-free WBPHs significantly preferred infected rice plants to healthy plants, whereas both the viruliferous and nonviruliferous WBPHs preferred healthy plants to infected plants. In additional tests, we found that the BPHs significantly preferred healthy plants when they were virus free, whereas RRSV-carrying BPHs preferred SRBSDV-infected rice plants. From these findings, we propose that plant viruses may alter host selection preference of vectors to enhance their spread and that of insects vectoring another virus to result in co-infection with more than one virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.