Angiogenesis is a process of new blood vessel formation from pre-existing vessels. Vascular endothelial growth factor-A (VEGF-A) binds to VEGF receptor-2 (VEGFR2) and thus activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway play a central role in angiogenesis. Total flavones of Abelmoschus manihot (TFA), the major active component of the traditional Chinese herb Abelmoschus manihot, display novel pro-angiogenic activity. However, little information concerning its underlying mechanism is available. Here we investigate the pro-angiogenesis of TFA with the aim of understanding its mechanism of action. Human umbilical vein endothelial cells (HUVECs) and the chick chorioallantoic membrane (CAM) model were used to evaluate pro-angiogenesis of TFA using cell viability, wounding healing, transwell invasion, tube formation, RT-qPCR and Western blot methods. LY294002, a PI3K inhibitor, was used to interfere with PI3K/Akt pathway signal for assessing the underlying mechanism. Results in vitro indicated TFA obviously promoted HUVECs proliferation, migration, invasion and tube formation. Furthermore, TFA markedly augmented PI3K and Akt phosphorylation and up-regulated VEGF-A and VEGFR2 expression in HUVECs. However, pre-treatment with LY294002 not only markedly attenuated TFA-induced cells proliferation, migration, invasion and tube formation, but also significantly abolished TFA-induced VEGF-A and VEGFR2 over-expression as well as PI3K and Akt phosphorylation. Experiments in CAM model showed TFA significantly promoted the formation of branched blood vessels and was dramatically suppressed by LY294002. Taken together, TFA promoted angiogenesis both in vitro and in vivo which, however, were counteracted by LY294002, suggesting at least in part, TFA exhibits pro-angiogenic activity by activating the VEGF-A/VEGFR2-PI3K/Akt signaling axis.
Angiogenesis is a process of new blood vessel formation from pre-existing vessels. It is a normal and vital process in growth and development, as well as in wound healing and in the formation of granulation tissue. Total flavones of Abelmoschus manihot (TFA) are the major constituents of the traditional Chinese herb Abelmoschus manihot L. Medic. The aim of this study is to investigate the effect of TFA on angiogenic ability using human umbilical vein endothelial cells (HUVECs) in vitro and chick chorioallantoic membrane (CAM) in vivo. HUVECs were treated with TFA at different concentrations. Cell viability, cell cycle progression, cell apoptosis, cell migration and tubular formation were investigated. The expression of vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR, VEGFR-2) was examined by immunohistochemistry to identify mechanism of action of TFA. CAM model was used to evaluate the effect of TFA on angiogenesis in vivo. Our results showed that TFA promoted HUVECs proliferation in a dose- and time-dependent manner. It increased HUVECs migratory ability and the number of tubular structure, promoted vessel formation in HUVECs culture and CAM model. Furthermore, TFA treatment resulted in a decrease in cell apoptosis and enhanced the expression of VEGF and KDR. Taken together, TFA, as the major active component isolated from the traditional Chinese herb Abelmoschus manihot L. Medic, could enhance angiogenic ability of HUVECs in vitro and CAM in vivo. TFA may be used in the treatment of wound healing and ischemic/reperfusion injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.