In order to eliminate driving dangers caused by tire surface bubbles, the detection method of bubble defects on tire surfaces based on line lasers and machine vision is studied. Since it is difficult to recognize tire surfaces directly through images, line laser scanning is used to obtain tire images. The filtering method and morphology method are combined to preprocess these images. The gray centroid method is adopted to extract the center of the laser stripe, and then the algorithm to determine the positions of bubble defects on tire surfaces is proposed. According to the geometric characteristics of tire bubbles, the coordinates of starting points, ending points, and rough positions of vertices are determined. Then, the ordinates of the laser center with sub-pixel accuracy near bubble vertices are discretely magnified. The mask made of Gaussian function is convoluted with the magnified region, and the maximum value is obtained. Furthermore, the position of bubble vertices can be accurately extracted. The denoising effects of different methods for images are compared through experiments, and different positions of bubbles are detected. Experimental results show that the detection accuracy of this method is up to 93%, which is much higher than other methods. Experiments verify that the proposed method is effective for detecting tire surface bubbles.
Numerous jets can be generated simultaneously on a nozzle by needleless melt electrospinning technology which has the advantages of solvent-free residues and environmental friendliness; and potential industrial application prospects. In this paper, the linear annular tip nozzle was taken as the research object, and the high-speed image acquisition of the jets generation and distribution process of annular tip nozzle was carried out and compared with that of straight-line tip nozzle. The results showed that the repulsive force between the jets caused a slight adjustment in the position of the jets on the free surface, the force between the jets on the annular closed curve canceled each other and eventually reached the equilibrium state, making the position of the jets stable and the distance between the jets the same, and the distance between the jets was related to the intensity of the induced electric field at the tip of the nozzle. Relevant conclusions can provide scientific and practical guidance for the design of needleless electrospinning nozzles on free surface in order to achieve uniform and efficient preparation of ultrafine fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.