Abstract-Peer-to-peer (P2P) technology has emerged as a promising scalable solution for live streaming to large group. In this paper, we address the design of overlay which achieves low source-to-peer delay, is robust to user churn, accommodates of asymmetric and diverse uplink bandwidth, and continuously improves based on existing user pool. A natural choice is the use of mesh, where each peer is served by multiple parents. Since the peer delay in a mesh depends on its longest path through its parents, we study how to optimize such delay while meeting a certain streaming rate requirement.We first formulate the minimum delay mesh problem and show that it is NP-hard. Then we propose a centralized heuristic based on complete knowledge which serves as our benchmark and optimal solution for all the other schemes under comparison. Our heuristic makes use of the concept of power in network given by the ratio of throughput and delay. By maximizing the network power, our heuristic achieves very low delay. We then propose a simple distributed algorithm where peers select their parents based on the power concept. The algorithm makes continuous improvement on delay until some minimum delay is reached. Simulation results show that our distributed protocol performs close to the centralized one, and substantially outperforms traditional and state-of-the-art approaches.
Abstract-Peer-to-peer (P2P) technology has emerged as a promising scalable solution for live streaming to large group. In this paper, we address the design of overlay which achieves low source-to-peer delay, is robust to user churn, accommodates of asymmetric and diverse uplink bandwidth, and continuously improves based on existing user pool. A natural choice is the use of mesh, where each peer is served by multiple parents. Since the peer delay in a mesh depends on its longest path through its parents, we study how to optimize such delay while meeting a certain streaming rate requirement.We first formulate the minimum delay mesh problem and show that it is NP-hard. Then we propose a centralized heuristic based on complete knowledge which serves as our benchmark and optimal solution for all the other schemes under comparison. Our heuristic makes use of the concept of power in network given by the ratio of throughput and delay. By maximizing the network power, our heuristic achieves very low delay. We then propose a simple distributed algorithm where peers select their parents based on the power concept. The algorithm makes continuous improvement on delay until some minimum delay is reached. Simulation results show that our distributed protocol performs close to the centralized one, and substantially outperforms traditional and state-of-the-art approaches.
Abstract-In free viewpoint video, a viewer can choose at will any camera angle or the so-called "virtual view" to observe a dynamic 3-D scene, enhancing his/her depth perception. The virtual view is synthesized using texture and depth videos of two anchor camera views via depth-image-based rendering (DIBR). We consider, for the first time, collaborative live streaming of a free viewpoint video, where a group of users may interactively pull and cooperatively share streams of different anchor views. There is a cost to access the anchor views from the live source, a cost to "reconfigure" the peer network due to a change in selected anchors during view switching, and a distortion cost due to the distance of the virtual views to the received anchor views at users. We optimize the anchor views allocated to users so as to minimize the overall streaming cost given by the access cost, reconfiguration cost, and view distortion cost. We first show that, if the reconfiguration cost due to view switching is negligible, the view allocation problem can be optimally and efficiently solved in polynomial time using dynamic programming. For the case of non-negligible reconfiguration cost, the problem becomes NP-hard. We thus present a locally optimal and centralized algorithm inspired by Lloyd's algorithm used in non-uniform scalar quantization. We further propose a distributed algorithm with convergence guarantee, where each peer group independently makes merge-and-split decisions with a well-defined fairness criteria. Simulation results show that our algorithms achieve low streaming cost due to its excellent anchor view allocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.