Hydrogen energy is considered to be a future energy source due to its higher energy density as compared to renewable energy and ease of storage and transport. Water electrolysis is one of the most basic methods for producing hydrogen. KOH and NaOH, which are currently used as electrolytes for water electrolysis, have strong alkalinity. So, it cause metal corrosion and can be serious damage when it is exposed to human body. Hence, experiments using cellulose nanofluid (CNF, C6H10O5) as an electrolyte were carried out to overcome the disadvantages of existing electrolytes and increase the efficiency of hydrogen production. The variables of the experiment were CNF concentration, anode material, voltage applied to the electrode, and initial temperature of the electrolyte. The conditions showing the optimal hydrogen production efficiency (99.4%) within the set variables range were found. CNF, which is not corrosive and has high safety, can be used for electrolysis for a long period of time because it does not coagulate and settle over a long period of time unlike other inorganic nanofluids. In addition, it shows high hydrogen production efficiency. So, it is expected to be used as a next-generation water electrolysis electrolyte.
In this study, we observed the Geyser phenomenon that occurs in a small-diameter two-phase closed thermosyphon (confinement number of 0.245). This phenomenon interferes with the natural circulation of the internal working fluid and increases the thermal resistance of the system. This study attempts to improve the thermal performance of the system using cellulose nanofiber as the working fluid and hydrophilic surface modification at the inner surface of the evaporator section. As a result, the total thermal resistance showed average reduction rates of 47.51%, 36.69%, and 22.56% at filling ratios of 0.25, 0.5, and 0.75, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.