With increasing amounts of oily water discharged from industrial and domestic sources, purifying oily emulsions using effective and eco-friendly methods is of great significance. Although functional membranes with selective wettabilities have been extensively explored for the efficient purification of oil-inwater emulsions, the development of functional membranes that use green and inexpensive materials, are simple to fabricate, and are easy to scale up remains very challenging. Herein, we report a simple approach that uses biomass to prepare a membrane for the purification of emulsions. A simple top-down approach was used to partially remove lignin and hemicellulose fractions in wood sheets, resulting in a highly porous and flexible wood membrane. The obtained wood membrane shows excellent water-absorbing and underwater anti-oil adhesion properties due to the removal of the hydrophobic lignin. The wood membrane is durable and stable, thereby maintaining its selective wettability in harsh environments. Selective wetting properties along with a porous structure enable the wood membrane to purify surfactant-stabilized oil-in-water emulsions. Such a biomass-derived membrane, which is green, inexpensive, easy to fabricate, and scalable, along with its selective wettability and durability, shows great potential for use as a substitute for existing filter media in diverse industries.
In this study, we observed the Geyser phenomenon that occurs in a small-diameter two-phase closed thermosyphon (confinement number of 0.245). This phenomenon interferes with the natural circulation of the internal working fluid and increases the thermal resistance of the system. This study attempts to improve the thermal performance of the system using cellulose nanofiber as the working fluid and hydrophilic surface modification at the inner surface of the evaporator section. As a result, the total thermal resistance showed average reduction rates of 47.51%, 36.69%, and 22.56% at filling ratios of 0.25, 0.5, and 0.75, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.