Nanoscale metallic multilayer films (NMMFs) have captured scientific interests on their mechanical responses. Compared with the properties of monolithic films, multilayers possess unique high strength as the individual layer thickness reduces to the nanoscale, which is benefited from the plentiful hetero-interfaces. However, NMMFs always exhibit a low fracture toughness and ductility, which seriously hinders their practical applications. While there have been reviews on the strengthening and deformation mechanisms of microlaminate, rapid developments in nanotechnology have brought an urgent requirement for an overview focused on the cracking and toughening mechanisms in nanoscale metallic multilayers. This article provides an extensive review on the structure, standard methodology and fracture mechanisms of NMMFs. A number of issues about the crack-related properties of NMMFs have been displayed, such as fracture toughness, wear resistance, adhesion energy, and plastic instability. Taken together, it is hoped that this review will achieve the following two purposes: (1) introducing the size-dependent cracking and toughness performance in NMMFs; and (2) offer a better understanding of the role interfaces displayed in toughening mechanisms. Finally, we list a few questions we concerned, which may shed light on further development.
The excellent properties of metallic glass (MG) films make them perfect candidates for the use in miniature systems and tools. However, their high coefficients of friction (COFs) and poor wear resistance considerably limit their long-term performance in nanoscale contact. We report the fabrication of a MG/graphene multilayer by the repeated deposition of Cu50Zr50 MG with alternating layers of graphene. The microstructure of the multilayer was characterized by the transmission electron microscopy (TEM). Its mechanical and nanotribological properties were studied by nanoindentation and nanoscratch tests, respectively. A molecular dynamics (MD) simulation revealed that the addition of graphene endowed the MG with superelastic recovery, which reduced friction during nanoscratching. In comparison with the monolithic MG film, the multilayer exhibited improved wear resistance and a low COF in repeated nanowear tests owing to the enhanced mechanical properties and lubricating effect caused by the graphene layer. This work is expected to motivate the design of other novel MG films with excellent nanowear properties for engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.