The effects that maternal dietary methionine have on progeny have been reported on broilers. However, the paternal effects are not known, so the current study was conducted to explore the influences of paternal dietary methionine (Met) have on progeny carcass traits, meat quality, and related gene expressions. A total of 192 hens and 24 roosters from Ross parent stock at 36 weeks of age were selected. From week 37 to 46, the roosters were allocated to two groups with three replicates of 4 cocks each, (control, 0.28% Met), and methionine group (MET group, 0.28% Met + 0.1% coated Met). The results revealed that, although the heavier live body weight in progeny at day 49 of control group compared to MET group (p < 0.05), the relative eviscerated yield and relative thigh muscle yield were higher in MET group (p < 0.05); but the relative abdominal fat was lower (p < 0.05). In thigh and breast muscles, a positive response of pH24 h value, shear force (g) and drip loss (%) were observed in MET group (p < 0.05). The lightness (L) and redness (a) were increased (p < 0.05) in breast muscles of MET group, while only the redness (a*24 h) and yellowness (b*24 h) were increased (p < 0.05) in thigh muscles of MET group. The gender has a significant (p < 0.05) effect on carcass traits and muscle redness (a*), where these traits improved in males, and no interaction between treatments and gender were observed for these results. The expression levels of PRKAG2 and PRDX4 supported the changes in muscle pH, with these up-regulated in thigh and breast muscles of MET group, the PPP1R3A gene supported the changes in pH value being down-regulated (p < 0.01) in these same muscles. The BCO1 gene expression was consistent with the changes in meat color and was up-regulated (p < 0.01) in thigh muscles of MET group, consistent with the changes in b* color values. Finally, it was concluded that the supplementation of 0.1% Met to rooster diets could improve carcass characteristics and meat quality of progeny.
This study aimed to investigate the effects of maternal dietary coated methionine ( Met ) on egg production and the quality, growth performance, carcass traits, and meat quality of the offspring. In total, 288 female Ross parental chickens were randomly assigned to 3 groups with 3 replicates of 32 chickens each. From week 37 to 46, the hens of different groups were fed diets containing low (0.27% Met), adequate (0.27% Met + 0.1% coated Met) ( AM ), and high (0.27% Met + 0.2% coated Met) ( HM ) Met. There was a positive response in laying rate and albumen weight in AM and HM groups. For the offspring at market age, BW, eviscerated weight, and muscle weight were increased in the AM group ( P < 0.05), whereas excessive supplementation was proven to be negative with those traits. The meat quality (color, pH, and shear force) of breast muscle was significantly influenced by different supplementation levels. The lightness and yellowness were increased in the HM group ( P < 0.05, P < 0.01, respectively), and redness was decreased in the AM group ( P < 0.05). A lower pH value occurred in chickens of the HM group ( P < 0.05). The expressions of meat quality–related genes were altered in the supplementation groups. The pH-related genes PRDX4 and PRKAG2 were found to be significantly differentially expressed ( P < 0.05, P < 0.01, respectively) and consistent with pH changes. The meat color–related gene BCO1 was also differentially expressed ( P < 0.01) and showed a corresponding change with yellowness value. Collectively, the best production performance was in the offspring with 0.1% coated Met supplementation (AM group). Supplementation with 0.2% coated Met (HM group) seemed to be excessive, but laying rate was increased in the HM group. Both results of phenotypic measurements and gene expression demonstrated that maternal-coated Met supplementation resulted in fluctuation of some meat quality indices in the offspring, but all values were still within the range found in normal chickens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.