Welded joints of poor welding surface quality are sensitive to stress concentrations, affecting both the tensile strength of workpieces and the fluidity of liquids and gases in pressure and liquid containers. Orthogonal experiments involving the laser welding of 1-mm-thick duplex stainless steel sheets were conducted using different electric current, pulse width and frequency values in order to analyse the effect of welding properties on the surface characteristics of the welded joints. Rapid judgement regarding the welded joint properties was made based on the observed welding surface quality. The results show that an even phase proportion and grain refinement are not necessarily guaranteed to provide good welding surface quality. A satisfactory welding surface quality characterised by a smaller spot pitch or spot pitch difference, smaller weld width, reduced surface roughness and valley depth of surface waviness implies better welded joint mechanical characteristics and a more even microstructure. The specimen with the most suitable welding parameters and the greatest heat input can reach the lowest volume fraction of ferrite phase of 42.5% and the highest tensile strength of 848 MPa, and its surface quality is the best.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.