To assess the impact of sanitation of a living environment on gut microbiota and development of the immune system, we raised BALB/c mice under three distinct environmental conditions: a specific pathogen-free animal room (SPF), a general animal room (XZ) and a farmhouse (JD). All other variables like diet, age, genetic background, physiological status and original gut microbiota were controlled for in the three groups. Using high-throughput sequencing of the 16S rRNA gene, we found that each mouse group had a specific structure of the gut microbial community. Groups JD and XZ harboured a significantly more diverse and richer gut microbiota than did group SPF. Bacteroidetes were significantly more abundant in groups XZ and JD than in group SPF, whereas Firmicutes showed the inverse pattern. Total serum immunoglobulin E (IgE) levels were significantly lower in groups XZ and JD than in group SPF. There were no significant differences in gut microbiota diversity and serum IgE concentration between groups JD and XZ, but we found higher abundance of dominant genera in the gut microflora of group JD. We conclude that exposure to soil, house dust and decaying plant material enhances gut microbial diversity and innate immunity. Our results seem to provide new evidence supporting the hygiene hypothesis.
Exposure to an unsanitary environment increases the diversity and alters the composition of gut microbiota. To identify the key element in the unsanitary environment responsible for this phenomenon, we investigated the effect and the extent by which the soil in our environment influenced the composition of gut microbiota. Results show that adding unsterile or sterile soil to bedding, either before birth or after weaning, influences significantly the composition of mice gut microbiota. Specifically, unsterile soil increases the richness and biodiversity of gut microbiota. Interestingly, based on UniFrac distance analysis of 16S rRNA sequences, the impact of soil on gut microbiota is comparable to that exerted by diet. These findings provide a potential new strategy for intervening on the human gut microbial community and preventing disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.