1] In this study, over 36,000 ground-based soil moisture measurements collected during the SGP97, SGP99, SMEX02, and SMEX03 field campaigns were analyzed to characterize the behavior of soil moisture variability across scales. The field campaigns were conducted in Oklahoma and Iowa in the central USA. The Oklahoma study region is sub-humid with moderately rolling topography, while the Iowa study region is humid with low-relief topography. The relationship of soil moisture standard deviation, skewness and the coefficient of variation versus mean moisture content was explored at six distinct extent scales, ranging from 2.5 m to 50 km. Results showed that variability generally increases with extent scale. The standard deviation increased from 0.036 cm 3 /cm 3 at the 2.5-m scale to 0.071 cm 3 /cm 3 at the 50-km scale. The log standard deviation of soil moisture increased linearly with the log extent scale, from 16 m to 1.6 km, indicative of fractal scaling. The soil moisture standard deviation versus mean moisture content exhibited a convex upward relationship at the 800-m and 50-km scales, with maximum values at mean moisture contents of roughly 0.17 cm 3 /cm 3 and 0.19 cm 3 /cm 3 , respectively. An empirical model derived from the observed behavior of soil moisture variability was used to estimate uncertainty in the mean moisture content for a fixed number of samples at the 800-m and 50-km scales, as well as the number of ground-truth samples needed to achieve 0.05 cm 3 /cm 3 and 0.03 cm 3 /cm 3 accuracies. The empirical relationships can also be used to parameterize surface soil moisture variations in land surface and hydrological models across a range of scales. To our knowledge, this is the first study to document the behavior of soil moisture variability over this range of extent scales using ground-based measurements. Our results will contribute not only to efficient and reliable satellite validation, but also to better utilization of remotely sensed soil moisture products for enhanced modeling and prediction.
The contrast between the point-scale nature of current ground-based soil moisture instrumentation and the ground resolution (typically >10 2 km 2) of satellites used to retrieve soil moisture poses a significant challenge for the validation of data products from current and upcoming soil moisture satellite missions. Given typical levels of observed spatial variability in soil moisture fields, this mismatch confounds mission validation goals by introducing significant sampling uncertainty in footprint-scale soil moisture estimates obtained from sparse ground-based observations. During validation activities based on comparisons between ground observations and satellite retrievals, this sampling error can be misattributed to retrieval uncertainty and spuriously degrade the perceived accuracy of satellite soil moisture products. This review paper describes the magnitude of the soil moisture upscaling problem and measurement density requirements for ground-based soil moisture networks. Since many large-scale networks do not meet these requirements, it also summarizes a number of existing soil moisture upscaling strategies which may reduce the detrimental impact of spatial sampling errors on the reliability of satellite soil moisture validation using spatially sparse ground-based observations. © 2012 by the American Geophysical Union
Abstract.A number of recent studies have focused on enhancing runoff prediction via the assimilation of remotelysensed surface soil moisture retrievals into a hydrologic model. The majority of these approaches have viewed the problem from purely a state or parameter estimation perspective in which remotely-sensed soil moisture estimates are assimilated to improve the characterization of pre-storm soil moisture conditions in a hydrologic model, and consequently, its simulation of runoff response to subsequent rainfall. However, recent work has demonstrated that soil moisture retrievals can also be used to filter errors present in satellite-based rainfall accumulation products. This result implies that soil moisture retrievals have potential benefit for characterizing both antecedent moisture conditions (required to estimate sub-surface flow intensities and subsequent surface runoff efficiencies) and storm-scale rainfall totals (required to estimate the total surface runoff volume). In response, this work presents a new sequential data assimilation system that exploits remotely-sensed surface soil moisture retrievals to simultaneously improve estimates of both prestorm soil moisture conditions and storm-scale rainfall accumulations. Preliminary testing of the system, via a synthetic twin data assimilation experiment based on the Sacramento hydrologic model and data collected from the Model Parameterization Experiment, suggests that the new approach is more efficient at improving stream flow predictions than data assimilation techniques focusing solely on the constraint of antecedent soil moisture conditions.
Triple collocation (TC) is routinely used to resolve approximated linear relationships between different measurements (or representations) of a geophysical variable that are subject to errors. It has been utilized in the context of calibration, validation, bias correction, and error characterization to allow comparisons of diverse data records from various direct and indirect measurement techniques including in situ remote sensing and model-based approaches. However, successful applications of TC require sufficiently large numbers of coincident data points from three independent time series and, within the analysis period, homogeneity of their linear relationships and error structures. These conditions are difficult to realize in practice due to infrequent spatiotemporal sampling of satellite and ground-based sensors. TC can, however, be generalized within the framework of instrumental variable (IV) regression theory to address some of the conceptual constraints of TC. We review the theoretics of IV and consider one possible strategy to circumvent the three-data constraint by use of lagged variables (LV) as instruments. This particular implementation of IV is suitable for circumstances where multiple data records are limited and the geophysical variable of interest is sampled at time intervals shorter than its temporal correlation length. As a demonstration of utility, the LV method is applied to microwave satellite soil moisture data sets to recover their errors over Australia and to estimate temporal properties of their relationships with in situ and model data. These results are compared against standard two-data linear estimators and the TC estimator as benchmark.
Globally, many rivers are experiencing declining water quality, for example, with altered levels of sediments, salts, and nutrients. Effective water quality management requires a sound understanding of how and why water quality differs across space, both within and between river catchments. Land cover, land use, land management, atmospheric deposition, geology and soil type, climate, topography, and catchment hydrology are the key features of a catchment that affect:(1) the amount of suspended sediment, nutrient, and salt concentrations in catchments (i.e., the source), (2) the mobilization ,and (3) the delivery of these constituents to receiving waters. There are, however, complexities in the relationship between landscape characteristics and stream water quality. The strength of this relationship can be influenced by the distance and spatial arrangement of constituent sources within the catchment, cross correlations between landscape characteristics, and seasonality. A knowledge gap that should be addressed in future studies is that of interactions and cross correlations between landscape characteristics. There is currently limited understanding of how the relationships between landscape characteristics and water quality responses can shift based on the other characteristics of the catchment. Understanding the many forces driving stream water quality and the complexities and interactions in these forces is necessary for the development of successful water quality management strategies. This knowledge could be used to develop predictive models, which would aid in forecasting of riverine water quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.