In South Korea, where avian infl uenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine infl uenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/ Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine infl uenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this infl uenza virus (H3N2) isolate. The beagles shed virus through nasal excretion, seroconverted, and became ill with severe necrotizing tracheobronchitis and bronchioalveolitis with accompanying clinical signs (e.g., high fever). Consistent with histologic observation of lung lesions, large amounts of avian infl uenza virus binding receptor (SAα 2,3-gal) were identifi ed in canine tracheal, bronchial, and bronchiolar epithelial cells, which suggests potential for direct transmission of avian infl uenza virus (H3N2) from poultry to dogs. Our data provide evidence that dogs may play a role in interspecies transmission and spread of infl uenza virus.
Transfer printing is a materials assembly technique that uses elastomeric stamps for heterogeneous integration of various classes of micro‐ and nanostructured materials into two‐ and three‐dimensionally organized layouts on virtually any type of substrate. Work over the past decade demonstrates that the capabilities of this approach create opportunities for a wide range of device platforms, including component‐ and system‐level embodiments in unusual optoelectronic technologies with characteristics that cannot be replicated easily using conventional manufacturing or growth techniques. This review presents recent progress in functional materials and advanced transfer printing methods, with a focus on active components that emit, absorb, and/or transport light, ranging from solar cells to light‐emitting diodes, lasers, photodetectors, and integrated collections of these in functional systems, where the key ideas provide unique solutions that address limitations in performance and/or functionality associated with traditional technologies. High‐concentration photovoltaic modules based on multijunction, micro‐ and millimeter‐scale solar cells and high‐resolution emissive displays based on microscale inorganic light‐emitting diodes provide examples of some of the most sophisticated systems, geared toward commercialization.
Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.