In this paper, a decode-and-forward (DF) shortpacket relaying model is developed to achieve timely status updates for intelligent monitoring within the Internet of Things (IoT), where the status updates generated at an IoT device are delivered to a remote server with the aid of a relay in both halfduplex (HD) and full-duplex (FD) modes. To characterise the data freshness of status updates, we exploit the age of information (AoI) as a metric, which is defined as the time elapsed since the generation of the latest successfully decoded status update. The average AoI is formulated and minimised for both HD-DF and FD-DF relaying IoT networks in finite blocklength regime. For the HD-DF relaying, we introduce a perfect approximation of the average AoI to solve the problem of average AoI minimisation with the optimal blocklengths in two phases. For the FD-DF relaying, we propose an iterative algorithm to solve the problem of average AoI minimisation by optimising the relay's transmit power and the blocklength. Illustrative numerical results not only substantiate the validity of our proposed algorithms, but also provide useful references for the IoT monitoring network design, specifically for the transmit power thresholds at the IoT device and the relay.Index Terms-Age of information (AoI), decode-and-forward (DF), finite blocklength regime, full duplex (FD), half duplex (HD), short-packet relaying, status updates.
Platinum (Pt) drugs (e.g., oxaliplatin, cisplatin) are applied in the clinic worldwide for the treatment of various cancers. However, platinum-induced peripheral neuropathy (PIPN) caused by the accumulation of Pt in the peripheral nervous system limits the clinical application, whose prevention and treatment are still a huge challenge. To date, Pt-induced reactive oxygen species (ROS) generation has been studied as one of the primary mechanisms of PIPN, whose downregulation would be feasible to relieve PIPN. This review will discuss ROS-related PIPN mechanisms including Pt accumulation in the dorsal root ganglia (DRG), ROS generation, and cellular regulation. Based on them, some antioxidant therapeutic drugs will be summarized in detail to alleviate the Pt-induced ROS overproduction. More importantly, we focus on the cutting-edge nanotechnology in view of ROS-related PIPN mechanisms and will discuss the rational fabrication of tailor-made nanosystems for efficiently preventing and treating PIPN. Last, the future prospects and potential breakthroughs of these anti-ROS agents and nanosystems will be briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.