Minimizing latency and maximizing throughput are important goals in the design of routing algorithms for interconnection networks. Ideally, we would like a routing algorithm to (a) route packets using the minimal number of hops to reduce latency and preserve communication locality, (b) deliver good worst-case and averagecase throughput and (c) enable low-complexity (and hence, low latency) router implementation. In this paper, we focus on routing algorithms for an important class of interconnection networks: two dimensional (2D) mesh networks. Existing routing algorithms for mesh networks fail to satisfy one or more of design goals mentioned above. Variously, the routing algorithms suffer from poor worst case throughput (ROMM [13], DOR [24]), poor latency due to increased packet hops (VALIANT [32]) or increased latency due to hardware complexity (minimal-adaptive [7,31]). * This report is an expanded version of a previously published paper [18]. 1The major contribution of this paper is the design of an oblivious routing algorithm-O1TURN-with provable near-optimal worst-case throughput, good average-case throughput, low design complexity and minimal number of network hops for 2D-mesh networks, thus satisfying all the stated design goals. O1TURN offers optimal worst-case throughput when the network radix (k in a kxk network) is even. When the network radix is odd, O1TURN is within a 1/k 2 factor of optimal worst-case throughput. O1TURN achieves superior or comparable average-case throughput with global traffic as well as local traffic. For example, O1TURN achieves 18.8%, 0.7% and 13.6% higher average-case throughput than DOR, ROMM and VALIANT routing, respectively when averaged over one million random traffic patterns on an 8x8 network. Finally, we demonstrate that O1TURN is well suited for a partitioned router implementation that is of similar delay complexity as a simple dimension-ordered router. Our implementation incurs a marginal increase in switch arbitration delay that is completely hidden in pipelined routers as it is not on the clock-critical path.
Abstract-This paper describes the demonstration of 2.5-Gb/s four-user optical-code-division-multiple-access (OCDMA) system operating at bit-error rate 10 11 utilizing programmable spectral phase encoding, an ultrasensitive ( 200 fJ/b) periodically poled lithium-niobate-waveguide nonlinear waveform discriminator and 10G Ethernet receiver. A comprehensive description of this ultra-short-pulse spectral phase-coded OCDMA system is presented. On the subsystem level, two key component technologies, namely, femtosecond encoding/decoding and low-power high-contrast nonlinear discrimination, have been developed and characterized. At the system level, data for the four-user OCDMA system operating at 2.5 Gb/s for binary as well as multilevel code families are described.Index Terms-Multiaccess interference (MAI), nonlinear optics, optical code-division multiple access (OCDMA), optical signal processing, pulse shaping.
We demonstrate reconfigurable and tunable flat-top microwave photonic filters based on an optical comb source and a dispersive medium. Complex taps allowing flexible and tunable filter characteristics are implemented by programming the amplitude and phase of individual comb lines using an optical line-by-line pulse shaper. First, we implement a flat top filter by applying positive and negative weights across the comb lines, then tune the filter center frequency by adding a phase ramp onto the tap weights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.