Because people spend approximately 85-90% of their time indoors, it is widely recognized that a significant portion of total personal exposures to ambient particles occurs in indoor environments. Although penetration efficiencies and deposition rates regulate indoor exposures to ambient particles, few data exist on the levels or variability of these infiltration parameters, in particular for time- and size-resolved data. To investigate ambient particle infiltration, a comprehensive particle characterization study was conducted in nine nonsmoking homes in the metropolitan Boston area. Continuous indoor and outdoor PM2.5 and size distribution measurements were made in each of the study homes over weeklong periods. Data for nighttime, nonsource periods were used to quantify infiltration factors for PM2.5 as well as for 17 discrete particle size intervals between 0.02 and 10 microns. Infiltration factors for PM2.5 exhibited large intra- and interhome variability, which was attributed to seasonal effects and home dynamics. As expected, minimum infiltration factors were observed for ultrafine and coarse particles. A physical-statistical model was used to estimate size-specific penetration efficiencies and deposition rates for these study homes. Our data show that the penetration efficiency depends on particle size as well as home characteristics. These results provide new insight on the protective role of the building shell in reducing indoor exposures to ambient particles, especially for tighter (e.g., winterized) homes and for particles with diameters greater than 1 micron.
A comprehensive indoor particle characterization study was conducted in nine Boston-area homes in 1998 in order to characterize sources of PM in indoor environments. State-of-the-art sampling methodologies were used to obtain continuous PM2.5 concentration and size distribution particulate data for both indoor and outdoor air. Study homes, five of which were sampled during two seasons, were monitored over week-long periods. Among other data collected during the extensive monitoring efforts were 24-hr elemental/organic carbon (EC/OC) particulate data as well as semi-continuous air exchange rates and time-activity information. This rich data set shows that indoor particle events tend to be brief, intermittent, and highly variable, thus requiring the use of continuous instrumentation for their characterization. In addition to dramatically increasing indoor PM2.5 concentrations, these data demonstrate that indoor particle events can significantly alter the size distribution and composition of indoor particles. Source event data demonstrate that the impacts of indoor activities are especially pronounced in the ultrafine (da < or = 0.1 micron) and coarse (2.5 < or = da < or = 10 microns) modes. Among the sources of ultrafine particles characterized in this study are indoor ozone/terpene reactions. Furthermore, EC/OC data suggest that organic carbon is a major constituent of particles emitted during indoor source events. Whether exposures to indoor-generated particles, particularly from large short-term peak events, may be associated with adverse health effects will become clearer when biological mechanisms are better known.
The ras p21 GTPase-activating protein (GAP) was purified from human placental tissue. Internal amino acid sequence was obtained from this 120,000-dalton protein and, by means of this sequence, two types of complementary DNA clones were isolated and characterized. One type encoded GAP with a predicted molecular mass of 116,000 daltons and 96% identity with bovine GAP. The messenger RNA of this GAP was detected in human lung, brain, liver, leukocytes, and placenta. The second type appeared to be generated by a differential splicing mechanism and encoded a novel form of GAP with a predicted molecular mass of 100,400 daltons. This protein lacks the hydrophobic amino terminus characteristic of the larger species, but retains GAP activity. The messenger RNA of this type was abundantly expressed in placenta and in several human cell lines, but not in adult tissues.
Airborne particles containing elemental carbon (EC) are currently at the forefront of scientific and regulatory scrutiny, including black carbon, carbon black, and engineered carbon-based nanomaterials, e.g., carbon nanotubes, fullerenes, and graphene. Scientists and regulators sometimes group these EC-containing particles together, for example, interchangeably using the terms carbon black and black carbon despite one being a manufactured product with well-controlled properties and the other being an undesired, incomplete-combustion byproduct with diverse properties. In this critical review, we synthesize information on the contrasting properties of EC-containing particles in order to highlight significant differences that can affect hazard potential. We demonstrate why carbon black should not be considered a model particle representative of either combustion soots or engineered carbon-based nanomaterials. Overall, scientific studies need to distinguish these highly different EC-containing particles with care and precision so as to forestall unwarranted extrapolation of properties, hazard potential, and study conclusions from one material to another.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.