SUMMARY
αβ and γδ T-cells arise from a common thymocyte progenitor during development in the thymus. Emerging evidence suggests that the pre-T cell receptor (pre-TCR) and γδ T-cell receptor (γδTCR) play instructional roles in specifying the αβ and γδ T-lineage fates, respectively. Nevertheless, the signaling pathways differentially engaged to specify the fate and promote the development of these lineages remain poorly understood. Here we show that differential activation of the ERK - early growth response gene (Egr) - inhibitor of DNA binding 3 (Id3) pathway plays a defining role in this process. In particular, Id3 expression serves to regulate adoption of the γδ fate. Moreover, Id3 is both necessary and sufficient to enable γδ-lineage cells to differentiate independently of Notch signaling and become competent IFNγ-producing effectors. Taken together, these findings identify Id3 as a central player that controls both adoption of the γδ fate and their maturation in the thymus.
The ras p21 GTPase-activating protein (GAP) was purified from human placental tissue. Internal amino acid sequence was obtained from this 120,000-dalton protein and, by means of this sequence, two types of complementary DNA clones were isolated and characterized. One type encoded GAP with a predicted molecular mass of 116,000 daltons and 96% identity with bovine GAP. The messenger RNA of this GAP was detected in human lung, brain, liver, leukocytes, and placenta. The second type appeared to be generated by a differential splicing mechanism and encoded a novel form of GAP with a predicted molecular mass of 100,400 daltons. This protein lacks the hydrophobic amino terminus characteristic of the larger species, but retains GAP activity. The messenger RNA of this type was abundantly expressed in placenta and in several human cell lines, but not in adult tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.