Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond or individual phosphorus dopants in silicon have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems: it has a large bandgap with deep defects and benefits from mature fabrication techniques. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.
SUMMARY
αβ and γδ T-cells arise from a common thymocyte progenitor during development in the thymus. Emerging evidence suggests that the pre-T cell receptor (pre-TCR) and γδ T-cell receptor (γδTCR) play instructional roles in specifying the αβ and γδ T-lineage fates, respectively. Nevertheless, the signaling pathways differentially engaged to specify the fate and promote the development of these lineages remain poorly understood. Here we show that differential activation of the ERK - early growth response gene (Egr) - inhibitor of DNA binding 3 (Id3) pathway plays a defining role in this process. In particular, Id3 expression serves to regulate adoption of the γδ fate. Moreover, Id3 is both necessary and sufficient to enable γδ-lineage cells to differentiate independently of Notch signaling and become competent IFNγ-producing effectors. Taken together, these findings identify Id3 as a central player that controls both adoption of the γδ fate and their maturation in the thymus.
Novel, stimulus-responsive supramolecular structures in the form of fibers, gels, and spheres, derived from an azobenzene-containing benzenetricarboxamide derivative, are described. Self-assembly of tris(4-((E)-phenyldiazenyl)phenyl)benzene-1,3,5-tricarboxamide (Azo-1) in aqueous organic solvent systems results in solvent dependent generation of microfibers (aq DMSO), gels (aq DMF), and hollow spheres (aq THF). The results of a single crystal X-ray diffraction analysis of Azo-1 (crystallized from a mixture of DMSO and H2O) reveal that it possesses supramolecular columnar packing along the b axis. Data obtained from FTIR analysis and density functional theory (DFT) calculation suggest that multiple hydrogen bonding modes exist in the Azo-1 fibers. UV irradiation of the microfibers, formed in aq DMSO, causes complete melting while regeneration of new fibers occurs upon visible light irradiation. In addition to this photoinduced and reversible phase transition, the Azo-1 supramolecules display a reversible, fiber-to-sphere morphological transition upon exposure to pure DMSO or aq THF. The role played by amide hydrogen bonds in the morphological changes occurring in Azo-1 is demonstrated by the behavior of the analogous, ester-containing tris(4-((E)-phenyldiazenyl)phenyl)benzene-1,3,5-tricarboxylate (Azo-2) and by the hydrogen abstraction in the presence of fluoride anions.
Scalable quantum networking requires quantum systems with quantum processing capabilities. Solid state spin systems with reliable spin–optical interfaces are a leading hardware in this regard. However, available systems suffer from large electron–phonon interaction or fast spin dephasing. Here, we demonstrate that the negatively charged silicon-vacancy centre in silicon carbide is immune to both drawbacks. Thanks to its
4
A
2
symmetry in ground and excited states, optical resonances are stable with near-Fourier-transform-limited linewidths, allowing exploitation of the spin selectivity of the optical transitions. In combination with millisecond-long spin coherence times originating from the high-purity crystal, we demonstrate high-fidelity optical initialization and coherent spin control, which we exploit to show coherent coupling to single nuclear spins with ∼1 kHz resolution. The summary of our findings makes this defect a prime candidate for realising memory-assisted quantum network applications using semiconductor-based spin-to-photon interfaces and coherently coupled nuclear spins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.