A substantial amount of attention has been paid to viscosity due to its substantial effect on the fluid dynamics of molten blast furnace slag and slag metal reaction kinetics during the pyrometallurgy process. To clarify the influence mechanism of unburned pulverized coal (UPC) on blast furnace (BF) slag viscosity, the effects of different contents of UPC on the BF slag viscosity, free-running temperature and viscous flow activation energy were investigated. The slag viscosity was measured by the rotating cylinder method, and the microstructure of the cooled slag was observed by SEM. As a result, the main reason for a change in the slag viscosity, free-running temperature and viscous flow activation energy was that the UPC entering the slag formed a large number of white particles that predominantly comprised deposited carbon and a high melting point solid solution. In addition, the disintegration or polymerization of the SixOz- y structure was also a contributing factor. When the content of the UPC was 0.6%, the free-running temperature and viscous flow activation energy of slag were 1623 K and 120.969 kJ/mol, respectively, which are lower than those of the slag without UPC. However, the free-running temperature and viscous flow activation energy increased to 1668 K and 286.625 kJ/mol, respectively, when the content of UPC increased to 4%, which are higher than those of slag without UPC.
The purpose of this study is to explore the possibility of using industrial lignin instead of pulverized coal as a reducing agent for the production of direct reduced iron (DRI), thus reducing CO 2 emissions. The pyrolysis characteristics and kinetics of pulverized coal and industrial lignin were studied by nonisothermal thermogravimetry. In the three stages of pyrolysis, the weight loss rate of industrial lignin is higher than that of pulverized coal. The volatile matter of industrial lignin is easier to release than that of pulverized coal, but the coking process is longer than that of pulverized coal. The activation energies of pyrolysis of Lu'an anthracite (LA), Shen'mu bituminous coal (SM), alkali lignin (AL), and magnesium lignosulfonate (ML) were 71.10, 70.30, 55.20, and 37.34 kJ•mol −1 at the middle-temperature stage, and 133.64, 98.31, 57.78, and 46.68 kJ•mol −1 at the high-temperature stage, respectively. After pyrolysis, a few nanometer thick carbon film structure appears in alkali lignin coke, which is conducive to the reduction of iron ore powder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.