Icariside II (ICS II) has been reported to have protective effects against oxidative stress. However, whether ICS II protects cardiomyocytes from myocardial infarction (MI), and the associated underlying mechanisms, remain to be elucidated. Therefore, the current study investigated the effects of ICS II on hypoxia-injured H9c2 cells, as well as the associated molecular mechanisms. A hypoxic injury model was established to emulate the effects of MI. The effects of ICS II on the proliferation of rat cardiomyocyte H9c2 cells were assessed with cell counting kit-8 assays. The apoptotic status of the cells was assessed by flow cytometry, and the expression of apoptosis-related proteins was analyzed by western blotting. A microRNA (miRNA/miR) microarray was used to quantify the differential expression of miRNAs after ICS II treatment, and the levels of miR-7-5p were further quantified by reverse transcription-quantitative PCR. Whether ICS II affected hypoxia-injured cells via miR-7-5p was subsequently examined, and the target of miR-7-5p was also investigated by bioinformatics analysis and luciferase reporter assays. The effects of ICS II on the PI3K/Akt pathway were then evaluated by western blot analysis. Hypoxia treatment decreased viability and the migration and invasion abilities of H9c2 cells, and also induced apoptosis. ICS II significantly increased viability and reduced hypoxia-associated apoptosis. Moreover, ICS II treatment led to the upregulation of miR-7-5p, and the protective effects of ICS II were found to rely on miR-7-5p. Moreover, BTG anti-proliferation factor (BTG2) was identified as a direct target of miR-7-5p, and overexpression of BTG2 inhibited the protective effects of miR-7-5p. Finally, ICS II treatment resulted in the activation of the PI3K/Akt signaling pathway, which is essential for the survival of H9c2 cells under hypoxic conditions. In summary, ICS II reduces hypoxic injury in H9c2 cells via the miR-7-5p/BTG2 axis and activation of the PI3K/Akt signaling pathway.
As communication networks are implemented for information exchange between the master and slave sides of bilateral teleoperation systems, they are exposed to cyber-attack threats. This paper aims to analyse the performance of bilateral teleoperation systems in the presence of random denial-of-service (DoS) attacks and constant transmission delays and propose a mode-dependent switching controller to mitigate the influence of DoS attacks. The characteristics of DoS attacks and networks are thoroughly incorporated in the design; also considered is the case of both communication directions behaving independently. Specifically, the model of a teleoperation system under a DoS attack is integrated as a stochastic jump system. A mode-dependent control approach is proposed for a teleoperation system to mitigate the influence of random DoS attacks. In case studies, vulnerability analysis and time-domain simulation results show that teleoperation system performance can be degraded under continuous random DoS attacks. When the proposed mode-based switching controllers are installed, the trajectory tracking performance and authenticity of interaction force feedback are significantly improved during the attacking period.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.