The Suzuki-Miyaura reaction is one of the most popular and efficient routes for the formation of carbon-carbon bonds in both laboratorial and industrial synthetic processes. Here, we report for the first time that a Au-Pd/TiO catalyst could be utilized efficiently for Suzuki-Miyaura reactions at ambient conditions under visible light with high activity and reusability. Mechanistic investigation by means of experimental methods revealed that through the strong local surface plasma resonance of Au under the visible light, the hot electrons of Au could be injected into Pd in the bimetallic nanoparticles, thus facilitating activation of the aryl halides. Meanwhile, the electropositive Au tended to gain electrons from TiO, resulting in the separation of the photogenerated electron/hole pairs of TiO, which enabled the holes to activate aryl boronic acids. This Au-Pd/TiO catalyst not only expands the application scope of Suzuki-Miyaura reactions under mild conditions but will also inspire further exploitation of the direct harvesting of visible light by nanomaterials for a wide range of chemical reactions.
We describe measurements of thermodynamic temperature in the range 5 K to 24.5561 K (the triple point of neon) using single-pressure refractive-index gas thermometry (SPRIGT) with 4He. In the wake of the May 2019 re-definition of the kelvin and its associated mise en pratique, the main purpose of the work is to provide values of T–T
90, the discrepancy between thermodynamic temperature and that of the International Temperature Scale of 1990 (ITS-90). The link to ITS-90 is made via calibrated rhodium-iron resistance thermometers. Innovations required to reach the level of accuracy required for meaningful measurements (uncertainty in T–T
90 less than the expected deviation) include the suppression of temperature oscillations in a cryogen-free cryostat, a pressure stabilization scheme based on a non-rotating piston balance, modelling of the hydrostatic head correction and refinements of the measurement of microwave resonances in a quasi-spherical copper resonator. The accuracy of measurements varies from 0.05 mK to 0.17 mK and is competitive with that of all previous ones in this temperature range using other techniques. The improvement stems partly from the new techniques used for the new definition of the kelvin as well as ab initio calculations of the thermophysical properties ofgaseous 4He. In addition to confirming the validity of SPRIGT as an accurate, easier-to-implement alternative to other low-temperature primary thermometry techniques (e.g. acoustic gas thermometry) yet with scope for improvement, the results should provide important input data for any future revision of ITS-90.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.