Hydrogen production from thermochemical conversion has been considered the most promising technology for the use of biomass, and some novel methods are also being developed for low cost and high efficiency.
Electron paramagnetic resonance (EPR) spectroscopy using paramagnetic probes has been employed as an important tool for the accurate determination of oxygen (O2) concentrations in biological systems. However, paramagnetic probes are still limited by their intracellular penetrability. Various esterified trityl derivatives were synthesized and characterized, and an X-ray structure of one of the triyl radicals was determined. The ester-derivatized trityls exhibited higher sensitivity to O2 concentration compared to the trityl tricarboxylate CT-03. Cyclic voltammetry was also carried out to assess the susceptibility of the trityl radicals to oxidation and reduction. Among all of the ester-derivatized trityls studied, facile hydrolysis of the acetoxymethoxy esters to the respective carboxylate was observed using porcine liver esterase. This study demonstrates that cellular permeability of the trityl radicals can be achieved by varying the type and number of ester groups. Therefore, ester-derivatized trityl radicals show great potential as intracellular EPR oximetry probes and imaging agents.
Investigations made by the authors and collaborators into the microstructural aspects of adiabatic shear localization are critically reviewed. The materials analyzed are low-carbon steels, 304 stainless steel, monocrystalline Fe-Ni-Cr, Ti and its alloys, Al-Li alloys, Zircaloy, copper, and Al/SiC p composites. The principal findings are the following: (a) there is a strain-ratedependent critical strain for the development of shear bands; (b) deformed bands and whiteetching bands correspond to different stages of deformation; (c) different slip activities occur in different stages of band development; (d) grain refinement and amorphization occur in shear bands; (e) loss of stress-carrying capability is more closely associated with microdefects rather than with localization of strain; (f) both crystalline rotation and slip play important roles; and (g) band development and band structures are material dependent. Additionally, avenues for new research directions are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.