The plastic deformation of crystalline and non-crystalline solids incorporates microscopically localized deformation modes that can be precursors to shear localization. Shear localization has been found to be an important and sometimes dominant deformation and fracture mode in metals, fractured and granular ceramics, polymers, and metallic glasses at high strains and strain rates. Experiments involving the collapse of a thick walled cylinder enable controlled and reproducible application of plastic deformation at very high strain rates to specimens. These experiments were supplemented by hat-shaped specimens tested in a compression Hopkinson bar. The initiation and propagation of shear bands has been studied in metals (Ti, Ta, Ti-6Al-4V, and stainless steel), granular and prefractured ceramics (Al 2 O 3 and SiC), a polymer (teflon) and a metallic glass (Co 58 Ni 10 Fe 5 Si 11 B 16 ). The first aspect that was investigated is the microstructural evolution inside the shear bands. A fine recrystallized structure is observed in Ti, Cu, Al-Li, and Ta, and it is becoming clear that a recrystallization mechanism is operating. The fast deformation and short cooling times inhibit grain-boundary migration; it is shown, for the first time, that a rotational mechanism, presented in terms of dislocation energetics and grain-boundary reorientation, can operate within the time of the deformation process. In pre-fractured and granular ceramics, a process of comminution takes place when the particles are greater than a critical size a c . When they are smaller than a c , particle deformation takes place. For the granular SiC, a novel mechanism of shear-induced bonding was experimentally identified inside the shear bands. For all materials, shear bands exhibit a clear self-organization, with a characteristic spacing that is a function of a number of parameters. This self-organization is analyzed in terms of fundamental material parameters in the frame of Grady-Kipp (momentum diffusion), Wright-Ockendon, and Molinari (perturbation) models.
Shear bands were generated under prescribed and controlled conditions in stainless steel . Hat-shaped specimens, deformed in a Hopkinson bar were used, yielding strain rates of approximately 104s-l and shear strains that could be varied between 1 and 100. Specimens recovered from the collapse of thick-walled cylinders were also investigated. Microstructural characterization was performed by electron backscattered diffraction (EBSD) with orientation imaging microscopy(OIM), and transmission electron microscopy (TEM). The shear-band thickness was approximately 8 jtim. This low-stacking fault energy alloy deforms, at the imposed strain rates (outside of the shear band), by planar dislocations and stacking fault packets, twinning, and occasional martensitic phase transformations at twin-twin intersections. EBSD reveals gradual lattice rotations of the grains approaching the core of the band. A [110] fiber texture (with the [110] direction perpendicular to both shear direction and shear plane normal) develops both within the shear band and in the adjacent grains. The formation of this texture, under an imposed global simple shear, suggests that rotations take place concurrently with the shearing deformation. This can be explained by compatibility requirements between neighboring deforming regions. EBSD could not reveal the deformation features at large strains because their scale was below the resolution of this technique. Transmission electron microscopy reveals a number of features that are interpreted in terms of the mechanisms of deformation and recovery/recrystallization postulated. They include the observation of grains with sizes in the nanocrystalline domain. The microstructural changes are described by an evolutionary model, leading from the initial grain size of 15 jum to the final submicronic (sub)grain size. Calculations are performed on the rotations of grain boundaries by grain-boundary diffusion, which is 3 orders of magnitude higher than bulk diffusion at the deformation temperatures. They indicate that the microstructural reorganization can take place within the deformation times of a few milliseconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.