Researchers view vast zeros in single-cell RNA-seq data differently: some regard zeros as biological signals representing no or low gene expression, while others regard zeros as missing data to be corrected. To help address the controversy, here we discuss the sources of biological and non-biological zeros; introduce five mechanisms of adding non-biological zeros in computational benchmarking; evaluate the impacts of non-biological zeros on data analysis; benchmark three input data types: observed counts, imputed counts, and binarized counts; discuss the open questions regarding non-biological zeros; and advocate the importance of transparent analysis.
A pressing challenge in single-cell transcriptomics is to benchmark experimental protocols and computational methods. A solution is to use computational simulators, but existing simulators cannot simultaneously achieve three goals: preserving genes, capturing gene correlations, and generating any number of cells with varying sequencing depths. To fill this gap, we propose scDesign2, a transparent simulator that achieves all three goals and generates high-fidelity synthetic data for multiple single-cell gene expression count-based technologies. In particular, scDesign2 is advantageous in its transparent use of probabilistic models and its ability to capture gene correlations via copulas.
In the burgeoning field of single-cell transcriptomics, a pressing challenge is to benchmark various experimental protocols and numerous computational methods in an unbiased manner. Although dozens of simulators have been developed for single-cell RNA-seq (scRNA-seq) data, they lack the capacity to simultaneously achieve all the three goals: preserving genes, capturing gene correlations, and generating any number of cells with varying sequencing depths. To fill in this gap, here we propose scDesign2, an interpretable simulator that achieves all the three goals and generates high-fidelity synthetic data for multiple scRNA-seq protocols and other single-cell gene expression count-based technologies. Compared with existing simulators, scDesign2 is advantageous in its transparent use of probabilistic models and is unique in its ability to capture gene correlations via copula. We verify that scDesign2 generates more realistic synthetic data for four scRNA-seq protocols (10x Genomics, CEL-Seq2, Fluidigm C1, and Smart-Seq2) and two single-cell spatial transcriptomics protocols (MERFISH and pciSeq) than existing simulators do. Under two typical computational tasks, cell clustering and rare cell type detection, we demonstrate that scDesign2 provides informative guidance on deciding the optimal sequencing depth and cell number in single-cell RNA-seq experimental design, and that scDesign2 can effectively benchmark computational methods under varying sequencing depths and cell numbers. With these advantages, scDesign2 is a powerful tool for single-cell researchers to design experiments, develop computational methods, and choose appropriate methods for specific data analysis needs.
To investigate molecular mechanisms underlying cell state changes, a crucial analysis is to identify differentially expressed (DE) genes along the pseudotime inferred from single-cell RNA-sequencing data. However, existing methods do not account for pseudotime inference uncertainty, and they have either ill-posed p-values or restrictive models. Here we propose PseudotimeDE, a DE gene identification method that adapts to various pseudotime inference methods, accounts for pseudotime inference uncertainty, and outputs well-calibrated p-values. Comprehensive simulations and real-data applications verify that PseudotimeDE outperforms existing methods in false discovery rate control and power.
Single-cell RNA sequencing (scRNA-seq) technologies have revolutionized biomedical sciences by enabling genome-wide profiling of gene expression levels at an unprecedented single-cell resolution. A distinct characteristic of scRNA-seq data is the vast proportion of zeros unseen in bulk RNA-seq data. Researchers view these zeros differently: some regard zeros as biological signals representing no or low gene expression, while others regard zeros as false signals or missing data to be corrected. As a result, the scRNA-seq field faces much controversy regarding how to handle zeros in data analysis. In this paper, we first discuss the origins of biological and non-biological zeros in scRNA-seq data. Second, we clarify the definitions of several commonly-used but ambiguous terms, including “dropouts,” “excess zeros,” and “zero inflation.” Third, we evaluate the impacts of non-biological zeros on cell clustering and differential gene expression analysis. Fourth, we summarize the advantages, disadvantages, and suitable users of three input data types: original counts, imputed counts, and binarized counts. Finally, we discuss the open questions regarding non-biological zeros, the need for benchmarking, and the importance of transparent analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.