Organoids show great potential in clinical translational research owing to their intriguing properties to represent a near physiological model for native tissues. However, the dependency of organoid generation on the use of poorly defined matrices has hampered their clinical application. Current organoid culture systems mostly reply on biochemical signals provided by medium compositions and cell-cell interactions to control growth. Recent studies have highlighted the importance of the extracellular matrix (ECM) composition, cell-ECM interactions, and mechanical signals for organoid expansion and differentiation. Thus, several hydrogel systems prepared using natural or synthetic-based materials have been designed to recreate the stem cell niche in vitro , providing biochemical, biophysical, and mechanical signals. In this review, we discuss how recapitulating multiple aspects of the tissue-specific environment through designing and applying matrices could contribute to accelerating the translation of organoid technology from the laboratory to therapeutic and pharmaceutical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.