A newly discovered lytic bacteriophage, V-YDF132, which efficiently infects the pathogenic strain of Vibrio harveyi, was isolated from aquaculture water collected in Yangjiang, China. Electron microscopy studies revealed that V-YDF132 belonged to the Siphoviridae family, with an icosahedral head and a long noncontractile tail. The phage has a latent period of 25 min and a burst size of 298 pfu/infected bacterium. V-YDF132 was stable from 37 to 50 °C. It has a wide range of stability (pH 5–11) and can resist adverse external environments. In addition, in vitro the phage V-YDF132 has a strong lytic effect on the host. Genome sequencing results revealed that V-YDF132 has a DNA genome of 84,375 bp with a GC content of 46.97%. In total, 115 putative open reading frames (ORFs) were predicted in the phage V-YDF132 genome. Meanwhile, the phage genome does not contain any known bacterial virulence genes or antimicrobial resistance genes. Comparison of the genomic features of the phage V-YDF132 and phylogenetic analysis revealed that V-YDF132 is a newly discovered Vibrio phage. Multiple genome comparisons and comparative genomics showed that V-YDF132 is in the same genus as Vibrio phages vB_VpS_PG28 (MT735630.2) and VH2_2019 (MN794238.1). Overall, the results indicate that V-YDF132 is potentially applicable for biological control of vibriosis.
Largemouth bass (Micropterus salmoides) is an important commercial fish farmed in China. Challenges related to diseases caused by pathogens, such as iridovirus, have become increasingly serious. In 2017, we detected iridovirus-infected diseased largemouth bass in Zunyi, Guizhou Province. The isolated virus was identified as an infectious spleen and kidney necrosis virus (ISKNV)-like virus (ISKNV-ZY). ISKNV-ZY induces a cytopathic effect after infecting mandarin fish brain (MFB) cells. Abundant hexagonal virus particles were observed in the cytoplasm of ISKNV-ZY-infected MFB cells, using electron microscopy. The whole genome of ISKNV-ZY contained 1122,48 bp and 122 open reading frames. Phylogenetic tree analysis showed that ISKNV-ZY was most closely related to BCIV, indicating that it is an ISKNV-like megalocytivirus. ISKNV-ZY-infected largemouth bass started to die on day six and reached a death peak on days 7–8. Cumulative mortality reached 100% on day 10. Using RNA sequencing-based transcriptome analysis after ISKNV-ZY infection, 6254 differentially expressed unigenes (DEGs) were identified, of which 3518 were upregulated and 2673 downregulated. The DEGs were associated with endocytosis, thermogenesis, oxidative phosphorylation, the JAK-STAT signaling pathway, the MAPK signaling pathway, etc. These results contribute to understanding the molecular regulation mechanism of ISKNV infection and provide a basis for ISKNV prevention.
Cells are important in the study of virus isolation and identification, viral pathogenic mechanisms and antiviral immunity. The spotted knifejaw (Oplegnathus punctatus) is a significant farmed fish in China that has been greatly affected by diseases in recent years. In this study, a new cell line derived from the spotted knifejaw brain (SKB) was established and characterized. SKB cells multiplied well in Leibovitz's L‐15 medium supplemented with 10% fetal bovine serum at 28°C. Chromosome analysis revealed that modal chromosome number was 48 for SKB. SKB cells exhibit susceptibility to several fish viruses, such as a largemouth bass virus, red grouper nervous necrosis virus (RGNNV), infectious spleen and kidney necrosis virus (ISKNV), Singapore grouper iridovirus (SGIV) and spotted knifejaw iridovirus isolate (SKIV‐TJ), as shown by cytopathic effect and increased viral titers. Electron microscopy results showed that the cytoplasm contained a large number of vacuoles, and many virus particles existed at the edge of the vacuoles in RGNNV‐infected cells and numerous viral particles were scattered throughout the cytoplasm in both ISKNV‐ and SKIV‐TJ‐infected cells. These results suggest that SKB is an ideal tool for studying host–virus interactions and potential vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.