Arsenic-contaminated mine tailings that were discharged into Whitewood Creek at Lead, South Dakota, from 1876 to 1978, were deposited along the floodplains of Whitewood Creek and the Belle Fourche River. The resulting arseniccontaminated floodplain deposit consists mostly of overbank sediments and filled abandoned meanders along Whitewood Creek, and overbank and point-bar sediments along the Belle Fourche River. Arsenic concentrations of the contaminated sediments indicate the degree of dilution of mine tailings by uncontaminated alluvium.About 13 percent of the 110 x lo6 Mg of mine tailings that were discharged at Lead were deposited along the Whitewood Creek floodplain. Deposition of mine tailings near the mouth of Whitewood Creek was augmented by an engineered structure. About 29 percent of the mine tailings delivered by Whitewood Creek were deposited along the Belle Fourche River floodplain. About 60 per cent of that sediment is contained in overbank deposits. Deposition along a segment of the Belle Fourche River was augmented by rapid channel migration. The proportions of contaminated sediment stored along Whitewood Creek and the Belle Fourche River are consistent with sediment storage along the floodplains of perennial streams in other, similar sized watersheds.
A metal-contaminated overbank deposit in west-central South Dakota resulted from the discharge of a large volume of mine tailings into a river system between the late 1800s and 1977. The deposit along the Belle Fourche River is typically up to 2 m thick and extends about 90 m away from the channel along the insides of meander bends. The sediments contain above-background levels of copper, iron, manganese, zinc, and particularly arsenic, which is commonly two orders of magnitude above background level in the contaminated sediments. Carbonate minerals in the deposit limit the desorption of arsenic by preventing acid formation. Arsenic concentrations provide a measure of the dilution of mine tailings by uncontaminated sediment.The arsenic appears to have been transported and deposited as arsenopyrite, but is now at least partially associated with iron oxides and hydroxides. Within individual samples, arsenic concentration has an inverse relation with grain size that results from the more efficient accumulation of arsenic on the greater surface area of the smaller particles. Arsenic concentration is inversely related to the sample weight percent finer than 16 pm, however, as a consequence of the dilution of the contaminated sediments by uncontaminated sediment with a finer grain-size distribution. Dilution by uncontaminated sediment from tributaries cause arsenic concentrations to decrease by a factor of 3 along 100 km of floodplain. An influx at high streamflow of uncontaminated sediment from terraces and the premining floodplain as well as from tributaries causes arsenic concentrations in parts of the contaminated deposit that are farthest away from the channel to be two to three times less than arsenic concentrations in overbank sediment that is immediately adjacent to the channel.
Short-term instability in the behaviour of a small, meandering alluvial channel is identified from the relation between sinuosity and either floodplain slope or channel slope within 17 reaches along an 81-kilometre section of the Belle Fourche River in western South Dakota. In reaches 1 to 4 and 11 to 17 the channel is relatively stable and sinuosity vanes inversely with channel slope. In reaches 5 to 10, sinuosity is positively related to floodplain slope. Sinuosity increases markedly in reaches 5, 6, and 7 (which are immediately downstream from a discontinuity in the long profile of the floodplain) in association with an increase in floodplain slope. Immediately upstream from the discontinuity, bankfull channel depth and sinuosity decrease and the area of the floodplain reworked by meander migration between 1939 and 1981 increases, in association with a decrease in floodplain slope. Channel behaviour in reaches 5 to 10 is best explained as a consequence of neotectonic activity, as indicated by changes in elevation recorded along geodetic survey lines that cross lineaments that may delimit the eastern boundary of the Black Hills uplift. Sinuosity acts as a barometer of the effects of neotectonic activity on alluvial channels. Initial indications of channel and floodplain instability due to neotectonic activity may be derived from evidence of anomalously active channel migration, as documented from photographic or topographic sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.