Glucose metabolism and its relationship with glucose-induced insulin release were studied in beta HC9 and beta TC3 cells to identify and characterize key factors controlling the intermediary metabolism of glucose and glucose-induced insulin release. The beta HC9 cell line, derived from pancreatic islets with beta-cell hyperplasia, is characterized by a normal concentration-dependency curve for glucose-stimulated insulin release, whereas the beta TC3 cell line, derived from pancreatic beta-cell tumors, shows a marked leftward shift of this curve. Maximum velocity and the Michaelis-Menten constant of glucose uptake in beta HC9 and beta TC3 cells were similar, even though GLUT-2 expression in these two cell lines differed. In both cell lines, the kinetic characteristics of glucose usage, glucose oxidation, and glucose-induced oxygen consumption were similar to those of glucose phosphorylation, indicating that the kinetics of glucose metabolism from the glucose phosphorylation step in the cytosol to the mitochondrial process of oxidative phosphorylation are determined by the glucose-phosphorylating enzyme, that is, by glucokinase in beta HC9 cells and by hexokinase in beta TC3 cells. Thus beta HC9 cells provide an opportunity for the quantitative analysis of glucose metabolism, the associated generation of coupling factors, and other essential beta-cell functions involved in glucose sensing and insulin secretion.
Glucokinase has exclusively high control strength on glucose usage in the pancreatic beta-cell. However, glucokinase also has extraordinarily high control strength on insulin secretion, which is linked to the phosphate potential, [ATP]/([ADP][Pi]) (F.M. Matschinsky, Y.Liang, P. Kesavan, L. Wang, P. Froguel, G. Velho, D. Cohen, M.A. Permutt, Y. Tanizawa, T.L. Jetton, K. Niswender, and M.A. Magnuson. J. Clin. Invest. 92: 2092-2098, 1993). We propose that the ATP produced via the tricarboxylic acid cycle is approximately constant, irrespective of the glucose level. Furthermore, the component of ATP production that is derived from glycolysis and glycolytically derived NADH, which is shuttled into the mitochondria, is a critical signal controlling the ionic events leading to insulin secretion, as suggested previously (M. J. MacDonald. Diabetes 39: 1461-1466, 1990 and I.D. Dukes, M.S. McIntyre, R.J. Mertz, L.H. Philipson, M.W. Roe, B. Spencer, and J.F. Worley III. J. Biol. Chem. 269: 10979-10982, 1994). To test this hypothesis, glucose usage, oxidation, and insulin secretion were measured in cultured rat islets over a wide range of concentrations of glucose and mannoheptulose, an inhibitor of glucokinase. These data were fit to a mathematical model that predicts that glucokinase will govern the rate of glucose usage and ATP production and will also have a strong, but not complete, control over the rate of glucose oxidation, the phosphate potential, and insulin release. Mannoheptulose caused an inhibition of all three fluxes. The estimates of the mechanistic parameters of the model [maximal velocity (Vmax) and Michaelis constant for glucokinase, Vmax for hexokinase and glucose transport, and the inhibition constant of mannoheptulose to glucokinase] were similar to those obtained in vitro. Thus the data are consistent with a model in which the primary importance of glycolysis in transducing the glucose signal into changes of the phosphate potential imparts to glucokinase a high control strength on glucose-induced insulin secretion.
Glucokinase (ATP:D-glucose 6-phosphotransferase, EC 2.7.1.2) from rat islets of Langerhans was partially purified by chromatography on DEAE-Cibacron blue F3GA agarose. The enzyme eluted in two separate peaks. Sigmoidal rate dependence was found with respect to glucose (Hill coefficient = 1.5) for both enzyme fractions. K. values for glucose were 5.7 mM for the major fraction and 4.5 mM for the minor fraction. Neither fraction phosphorylated GlcNAc. A' GlcNAc kinase (ATP. 2-acetamido-2-deoxy-D-glucose' 6-phosphotransferase; EC 2.7
We evaluated the possible role of islet glucokinase in controlling the rate of islet glucose metabolism, and thereby the rate of glucose-induced insulin release. The activities of glucokinase, hexokinase, P-fructokinase, and glyceraldehyde-P dehydrogenase were quantitated in sonicated or isotonically homogenized islet preparations using pyridine nucleotide-dependent fluorometric assays. In sonicates, about 1/4 of the islet glucose phosphorylating activity was due to an enzyme with kinetic properties similar to glucokinase; 3/4 of the activity was due to hexokinase. The procedure for determining islet glucokinase activity was improved by centrifuging isotonic islet homogenates at 12,000 x g. The supernatant fraction was enriched for glucokinase. About 1/2 of the glucose phosphorylating activity in this fraction was due to glucokinase and 1/2 was due to hexokinase. The glucokinase activity in islet homogenates was !23 of the activity of hexokinase, 1/40 of the activity of P-fructokinase, and 1/400 of the activity of glyceraldehyde-P dehydrogenase. Detailed concentration dependency curves of glucose and mannose utilization were also obtained with intact isolated pancreatic rat islets. Glucose and mannose usage in islets was governed by two superimposed hyperbolic systems differing in Km and Vmax. A high Km system (Km for glucose 11 mM and for mannose 21 mM) predominated. A low Km system (Km for glucose 215 and for mannose 530 microM) contributed about 15% to the total activity. The available data with intact islets could be rationalized by the existence of two distinct hexose phosphorylating enzymes with differing capacities and kinetic properties. These enzymes, tentatively identified as glucokinase and hexokinase, could coexist in the same cell or could be distributed among different cell types. The possible physiologic significance of these results is discussed, emphasizing the idea of dual control of glycolysis and insulin release by glucokinase and hexokinase. An earlier proposal that glucokinase serves as glucoreceptor of beta-cells [J. Biol. Chem. 243:2730 (1968)] is greatly strengthened by the present studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.