Experiments using purified recombinant human NAD(P)H:quinone oxidoreductase 1 (NQO1) revealed that the auto-oxidation of fully reduced protein resulted in a 1:1 stoichiometry of oxygen consumption to NADH oxidation with the production of hydrogen peroxide. The rate of auto-oxidation of fully reduced NQO1 was markedly accelerated in the presence of superoxide (O 2 . ), whereas the addition of superoxide dismutase greatly inhibited the rate of auto-oxidation.
NAD(P)H:quinone oxidoreductase 1 (NQO1) has been proposed to stabilize p53 via a redox mechanism involving oxidation of NAD(P)H as a consequence of the catalytic activity of NQO1. We report that treatment of HCT-116 human colon carcinoma cells with the NQO1 inhibitor ES936 had no effect on the levels of p53 protein. ES936 is a mechanism-based inhibitor of NQO1 that irreversibly blocks the catalytic function of the enzyme. This suggests that a redox mechanism involving NQO1-mediated NAD(P)H oxidation is not responsible for the stabilization of p53. We also examined the ability of the NQO1 protein to associate with p53 using co-immunoprecipitation experiments. Results from these experiments demonstrated co-immunoprecipitation of NQO1 with p53 and vice versa. The association between p53 and NQO1 was not affected by treatment of HCT-116 cells with ES936, demonstrating that the association was not dependent on the catalytic activity of NQO1. A comparison of isogenic HCT-116 p53؉/؉ and HCT-116 p53؊/؊ cells demonstrated an interaction of NQO1 and p53 only in the p53؉/؉ cells. Experiments performed in an in vitro transcription/translation system utilizing rabbit reticulocyte lysates confirmed the interaction of NQO1 and p53. In these experiments a full-length p53 coding region was used to express p53 in the presence of recombinant NQO1 protein. An association of p53 and NQO1 was also observed in primary human keratinocytes and mammary epithelial cells. In studies where mdm-2 co-immunoprecipitated with p53, no association of mdm-2 with NQO1 was observed. These data demonstrate an association between p53 and NQO1 that may represent an alternate mechanism of p53 stabilization by NQO1 in a wide variety of human cell types.
Cervical cancer is the second most common cancer in women worldwide. Human papillomavirus (HPV) is the etiologic agent for the vast majority of premalignant and malignant lesions, and high-risk HPV types can be detected in almost all cases of cervical dysplasia and carcinoma. HPV testing has been widely adopted for the triage of patients after a cervical cytology screening test (
The benzoquinone ansamycin geldanamycin and its derivatives are inhibitors of heat shock protein Hsp90, an emerging target for novel therapeutic agents both in cancer and in neurodegeneration. However, toxicity of these compounds to normal cells has been ascribed to reaction with thiol nucleophiles at the quinone 19-position. We reasoned that blocking this position would ameliorate toxicity, and that it might also enforce a favourable conformational switch of the trans-amide group into the cis-form required for protein binding. We report here an efficient synthesis of such 19-substituted compounds and realization of our hypotheses. Protein crystallography established that the new compounds bind to Hsp90 with, as expected, a cis-amide conformation. Studies on Hsp90 inhibition in cells demonstrated the molecular signature of Hsp90 inhibitors: decreases in client proteins with compensatory increases in other heat shock proteins in both human breast cancer and dopaminergic neural cells, demonstrating their potential for use in the therapy of cancer or neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.