LAMP3 (DC-LAMP, TSC403, CD208) was originally isolated as a gene specifically expressed in lung tissues. LAMP3 is located on a chromosome 3q segment that is frequently amplified in some human cancers, including uterine cervical cancer. Because two other members of the LAMP family of lysosomal membrane glycoproteins, LAMP1 and LAMP2, were previously implicated in potentially modulating the interaction of vascular endothelial and cancer cells, we hypothesized that LAMP3 might also play an important part in metastasis. To clarify the metastatic potential of LAMP3 in cervical cancers, we transfected a LAMP3 expression vector into a human uterine cervical cancer cell line, TCS. In an in vitro invasion assay, the migration of LAMP3-overexpressing TCS cells was significantly higher than in control TCS cells. In an in vivo metastasis assay, distant metastasis was detected in 9 of 11 LAMP3-overexpressing TCS cell-injected mice and in only 1 of 11 control mice. Histologic study showed that LAMP3-overexpressing cells readily invaded into the lymph-vascular space. In clinical samples, quantitative real-time reverse transcription-PCR (RT-PCR) analyses showed that LAMP3 mRNA was significantly up-regulated in 47 of 47 (100%) cervical cancers and in 2 of 15 (13%) cervical intraepithelial neoplasias, compared with a low level of LAMP3 mRNA expressed in normal uterine cervixes. Interestingly, high LAMP3 expression was significantly correlated with the overall survival of patients with stage I/II cervical cancers. These findings indicate that LAMP3 overexpression is associated with an enhanced metastatic potential and may be a prognostic factor for cervical cancer. (Cancer Res 2005; 65(19): 8640-5)
Clear cell carcinoma (CCC) of the ovary is known to be highly resistant to platinum-based chemotherapy. The purpose of our study was to identify a candidate protein that is associated with chemoresistance of CCC and to investigate the specific mechanism of chemoresistance conferred by the identified protein. Enhanced expression of Annexin A4 (Anx A4) was identified in ovarian CCC cells using 2-D differential gel electrophoresis (2D-DIGE) and mass spectrometry. Anx A4 levels were elevated in CCC cells compared with non-CCC cells as determined by real-time RT-PCR and Western blot analysis. Immunohistochemical analysis of Anx A4 was performed in 126 epithelial ovarian cancer tissue samples and demonstrated significantly elevated levels of Anx A4 protein levels in ovarian CCC tumors compared with ovarian serous and endometrioid tumors (p < 0.01). Anx A4-transfected ovarian non-CCC cells were more resistant to carboplatin (IC50 5 42 lM) compared with control cells (IC50 5 23 lM) as determined by modified MTT assay. Intracellular platinum levels were significantly lower in Anx A4-transfected cells compared with control cells after carboplatin treatment (p 5 0.0020) and after an additional 360 min of carboplatin-free incubation (p 5 0.0004), as measured by atomic absorption spectrophotometry. Expression of Anx A4 is elevated in ovarian CCC tumors and is associated with chemoresistance in cultured ovarian cancer cells. These results demonstrate that Anx A4 confers chemoresistance in ovarian cancer cells in part by enhancing drug efflux. Thus, Anx A4 may represent a novel therapeutic target of chemoresistance in patients with ovarian CCC. ' 2009 UICC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.