Secondary degeneration of nerve tissue adjacent to a traumatic injury results in further loss of neurons, glia and function, via mechanisms that may involve oxidative stress. However, changes in indicators of oxidative stress have not yet been demonstrated in oligodendrocytes vulnerable to secondary degeneration in vivo. We show increases in the oxidative stress indicator carboxymethyl lysine at days 1 and 3 after injury in oligodendrocytes vulnerable to secondary degeneration. Dihydroethidium staining for superoxide is reduced, indicating endogenous control of this particular reactive species after injury. Concurrently, node of Ranvier/paranode complexes are altered, with significant lengthening of the paranodal gap and paranode as well as paranode disorganisation. Therapeutic administration of 670 nm light is thought to improve oxidative metabolism via mechanisms that may include increased activity of cytochrome c oxidase. Here, we show that light at 670 nm, delivered for 30 minutes per day, results in in vivo increases in cytochrome c oxidase activity co-localised with oligodendrocytes. Short term (1 day) 670 nm light treatment is associated with reductions in reactive species at the injury site. In optic nerve vulnerable to secondary degeneration superoxide in oligodendrocytes is reduced relative to handling controls, and is associated with reduced paranode abnormalities. Long term (3 month) administration of 670 nm light preserves retinal ganglion cells vulnerable to secondary degeneration and maintains visual function, as assessed by the optokinetic nystagmus visual reflex. Light at a wavelength of 670 nm may serve as a therapeutic intervention for treatment of secondary degeneration following neurotrauma.
Following neurotrauma, cells beyond the initial trauma site undergo secondary degeneration, with excess Ca2+ a likely trigger for loss of neurons, compact myelin and function. Treatment using inhibitors of specific Ca2+ channels has shown promise in preclinical studies, but clinical trials have been disappointing and combinatorial approaches are needed. We assessed efficacy of multiple combinations of three Ca2+ channel inhibitors at reducing secondary degeneration following partial optic nerve transection in rat. We used lomerizine to inhibit voltage gated Ca2+ channels; oxidised adenosine-triphosphate (oxATP) to inhibit purinergic P2X7 receptors and/or 2-[7-(1H-imidazol-1-yl)-6-nitro-2,3-dioxo-1,2,3,4-tetrahydro quinoxalin-1-yl]acetic acid (INQ) to inhibit Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Only the three Ca2+ channel inhibitors delivered in combination significantly preserved visual function, as assessed using the optokinetic nystagmus visual reflex, at 3 months after injury. Preservation of retinal ganglion cells was partial and is unlikely to have accounted for differential effects on function. A range of the Ca2+ channel inhibitor combinations prevented swelling of optic nerve vulnerable to secondary degeneration. Each of the treatments involving lomerizine significantly increased the proportion of axons with normal compact myelin. Nevertheless, limiting decompaction of myelin was not sufficient for preservation of function in our model. Multiple combinations of Ca2+ channel inhibitors reduced formation of atypical node/paranode complexes; outcomes were not associated with preservation of visual function. However, prevention of lengthening of the paranodal gap that was only achieved by treatment with the three Ca2+ channel inhibitors in combination was an important additional effect that likely contributed to the associated preservation of the optokinetic reflex using this combinatorial treatment strategy.
Partial injury to the central nervous system (CNS) is exacerbated by additional loss of neurons and glia via toxic events known as secondary degeneration. Using partial transection of the rat optic nerve (ON) as a model, we have previously shown that myelin decompaction persists during secondary degeneration. Failure to repair myelin abnormalities during secondary degeneration may be attributed to insufficient OPC proliferation and/or differentiation to compensate for loss of oligodendrocyte lineage cells (oligodendroglia). Following partial ON transection, we found that sub-populations of oligodendroglia and other olig2+ glia were differentially influenced by injury. A high proportion of NG2+/olig2–, NG2+/olig2+ and CC1−/olig2+ cells proliferated (Ki67+) at 3 days, prior to the onset of death (TUNEL+) at 7 days, suggesting injury-related cues triggered proliferation rather than early loss of oligodendroglia. Despite this, a high proportion (20%) of the NG2+/olig2+ OPCs were TUNEL+ at 3 months, and numbers remained chronically lower, indicating that proliferation of these cells was insufficient to maintain population numbers. There was significant death of NG2+/olig2– and NG2−/olig2+ cells at 7 days, however population densities remained stable, suggesting proliferation was sufficient to sustain cell numbers. Relatively few TUNEL+/CC1+ cells were detected at 7 days, and no change in density indicated that mature CC1+ oligodendrocytes were resistant to secondary degeneration in vivo. Mature CC1+/olig2– oligodendrocyte density increased at 3 days, reflecting early oligogenesis, while the appearance of shortened myelin internodes at 3 months suggested remyelination. Taken together, chronic OPC decreases may contribute to the persistent myelin abnormalities and functional loss seen in ON during secondary degeneration.
Earlier studies have shown that Fe2+ transport into erythroid cells is inhibited by several transition metals (Mn2+, Zn2+, Co2+, Ni2+) and that Fe2+ transport can occur by two saturable mechanisms, one of high affinity and the other of low affinity. Also, the transport of Zn2+ and Cd2+ into erythroid cells is stimulated by NaHCO3 and NaSCN. The aim of the present investigation was to determine whether all of these transition metals can be transported by the processes described for Fe2+, Zn2+ and Cd2+ and to determine the properties of the transport processes. Rabbit reticulocytes and mature erythrocytes and reticulocytes from homozygous and heterozygous Belgrade rats were incubated with radiolabelled samples of the metals under conditions known to be optimal for high‐ and low‐affinity Fe2+ transport and for the processes mediated by NaHCO3 and NaSCN. All of the metals were transported by the high‐ and low‐affinity Fe2+ transport processes and could compete with each other for transport. The Km and Vmax values and the effects of incubation temperature and metabolic inhibitors were similar for all the metals. NaHCO3 and NaSCN increased the uptake of Zn2+ and Cd2+ but not the other metals. The uptake of all of the metals by the high‐affinity process was much lower in reticulocytes from homozygous Belgrade rats than in those from heterozygous animals, but there was no difference with respect to low‐affinity transport. It is concluded that the high‐ and low‐affinity ‘iron’ transport mechanisms can also transport several other transition metals and should therefore be considered as general transition metal carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.