Invasion and subsequent metastasis is the major cause of death from most cancers including prostate cancer. Herein we report on the potential tumor suppressive properties of Rab7, a GTPase that regulates trafficking of lysosomes. The movement of lysosomes to the cell surface in response to environmental cues increases the secretion of proteinases and cell invasion. We determined that Troglitazone and other members of the Thiazolidinedione family inhibit cell-surface directed lysosome trafficking and cathepsin B secretion through a Rab7-dependent mechanism. Moreover, Rab7 shRNA expressing cells were found to be more invasive in vitro and in vivo. Increased invasiveness was accompanied by elevated expression of the c-Met receptor and prolonged downstream signaling, thereby supporting a role for Rab7 as a mediator of signaling down-regulation. Taken together, these results suggested that Rab7 acts as a negative regulator of prostate tumor growth and invasion, providing further evidence for its potential as a tumor suppressor.
The establishment of a sylvatic reservoir of Zika virus (ZIKV) in the Americas is dependent on the susceptibility of primates of sufficient population density, the duration and magnitude of viremia, and their exposure to the human mosquito-borne transmission cycle. To assess the susceptibility of squirrel ( sp.) and owl monkeys ( sp.) to infection, we inoculated four animals of each species with ZIKV from the current epidemic. Viremia in the absence of detectible disease was observed in both species and seroconversion occurred by day 28. ZIKV was detected in the spleen of three owl monkeys: one at 7 days postinoculation (dpi) and two at 14 dpi. This study confirms the susceptibility to ZIKV infection of two Neotropical primate species that live in close proximity to humans in South America, suggesting that they could support a widespread sylvatic ZIKV cycle there. Collectively, establishment of a ZIKV sylvatic transmission cycle in South America would imperil eradication efforts and could provide a mechanism for continued exposure of humans to ZIKV infection and disease.
Mammalian target of rapamycin (mTOR) controls lymphangiogenesis. However, the underlying mechanism is not clear. Here we show that rapamycin suppressed insulin-like growth factor 1 (IGF-1)- or fetal bovine serum (FBS)-stimulated lymphatic endothelial cell (LEC) tube formation, an in vitro model of lymphangiogenesis. Expression of a rapamycin-resistant and kinase-active mTOR (S2035T, mTOR-T), but not a rapamycin-resistant and kinase-dead mTOR (S2035T/D2357E, mTOR-TE), conferred resistance to rapamycin inhibition of LEC tube formation, suggesting that rapamycin inhibition of LEC tube formation is mTOR kinase activity dependent. Also, rapamycin inhibited proliferation and motility in the LECs. Furthermore, we found that rapamycin inhibited protein expression of VEGF receptor 3 (VEGFR-3) by inhibiting protein synthesis and promoting protein degradation of VEGFR-3 in the cells. Down-regulation of VEGFR-3 mimicked the effect of rapamycin, inhibiting IGF-1- or FBS-stimulated tube formation, whereas over-expression of VEGFR-3 conferred high resistance to rapamycin inhibition of LEC tube formation. The results indicate that rapamycin inhibits LEC tube formation at least in part by downregulating VEGFR-3 protein expression.
Core binding factor (CBF) is a transcription factor complex that plays roles in development, stem-cell homeostasis, and human disease. CBF is a heterodimer composed of one of three DNA-binding RUNX proteins plus the non-DNA-binding protein, CBFβ. Recent studies have showed that the RUNX factors exhibit complex expression patterns in prostate, breast, and ovarian cancers, and CBF has been implicated in the control of cancer-related genes. However, the biologic roles of CBF in solid tumors have not been fully elucidated. To test whether CBF is required for the malignant phenotype of various epithelial cancers, we used lentiviral delivery of CBFβ-specific shRNA to significantly decrease CBFβ expression in two prostate cancer cell lines (PPC1 and PC-3) and the SKOV-3 ovarian cancer cell line. We found that knockdown of CBFβ significantly inhibited anchorage independent growth of each cell line. Further, CBFβ knockdown in PPC1 cells suppressed xenograft tumor growth compared to controls. Mice injected with SKOV-3 ovarian cancer cells knocked-down for CBFβ exhibited a survival time similar to control mice. However, human cells recovered from the ascites fluid of these mice showed CBFβ expression levels similar to those from mice injected with control SKOV-3 cells, suggesting that CBFβ knockdown is incompatible with tumor cell growth. Gene expression profiling of CBFβ knockdown cells revealed significant changes in expression in genes involved in various developmental and cell signaling pathways. These data collectively suggest that CBFβ is required for malignancy in some human cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.