Mounting evidence implicates the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis, in global amphibian declines and extinctions. While the virulence of this disease has been clearly demonstrated, there is, as yet, no mechanistic explanation for how B. dendrobatidis kills amphibians. To investigate the pathology of chytridiomycosis, blood samples were collected from uninfected, aclinically infected and clinically diseased amphibians and analyzed for a wide range of biochemical and hematological parameters. Here, we show that green tree frogs Litoria caerulea with severe chytridiomycosis had reduced plasma osmolality, sodium, potassium, magnesium and chloride concentrations. Stable plasma albumin, hematocrit and urea levels indicated that hydration status was unaffected, signifying depletion of electrolytes from circulation rather than dilution due to increased water uptake. We suggest that B. dendrobatidis kills amphibians by disrupting normal epidermal functioning, leading to osmotic imbalance through loss of electrolytes. Determining how B. dendrobatidis kills amphibians is fundamental to understanding the hostpathogen relationship and thus the population declines attributed to B. dendrobatidis. Understanding the mechanisms of mortality may also explain interspecific variation in susceptibility to chytridiomycosis. KEY WORDS:Amphibian declines · Chytridiomycosis · Batrachochytrium dendrobatidis · Pathogenesis · Mortality · Osmoregulation Resale or republication not permitted without written consent of the publisherDis Aquat Org 77: [113][114][115][116][117][118] 2007 Amphibian skin is well studied due to its unique functions (Deyrup 1964, Heatwole & Barthalmus 1994, Jorgensen 1997. The integument is a site of regulated transport for water, ions (electrolytes) and respiratory gases (Deyrup 1964, Heatwole & Barthalmus 1994, Jorgensen 1997. Permeability of frog skin varies over the body surface of an individual and also among species (Deyrup 1964, Heatwole & Barthalmus 1994. In some species osmotic permeability is greatest in an area of ventral integument commonly referred to as the pelvic patch (Czopek 1965, Baldwin 1974, Word & Hillman 2005, where there is dense cutaneous vasculature (Czopek 1965). Concomitantly, Batrachochytrium dendrobatidis occurs more commonly and at higher density in the ventral integument of infected frogs (Berger et al. 2005b, Puschendorf & Bolaños 2006. B. dendrobatidis grows within the keratinized cells of the superficial epidermis and causes irregular skin sloughing, hyperplasia and hyperkeratosis (Berger et al. 1998, 2005b, 2007. Other pathological changes including cytoplasmic degeneration and vacuolation in scattered cells have been observed by light and electron microscopy, but these changes are not usually severe (Berger et al. 2007). Thus, it is unclear how a superficial skin infection kills frogs.The aim of this research was to investigate pathogenesis in amphibians with chytridiomycosis. We evaluated changes in physiological parameters...
This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.
Nephrin is a 180 KD trans-membrane protein expressed in glomerular podocytes. It was first identified in children with congenital nephrotic syndrome of the Finnish type (NPHS1). Nephrin forms an integral part of podocytes, which—together with endothelial cells and the basement—form the glomerular filtration barrier. Podocytopathies result in the detection of nephrin in the urine. We reviewed the literature to determine if urine nephrin measurements could become useful as a biomarker to detect early podocyte injury. Our search identified a total of 19 studies that have been published to date. The most common clinical conditions for which urine nephrin analyses were carried out included diabetic nephropathy, glomerulonephritis and pre-eclampsia. Nephrin measurement was carried out using commercially available ELISA kits, the messenger ribonucleic acid real-time polymerase chain Reaction, or electrophoresis. Nephrinuria showed positive correlation with proteinuria and severity of podocyte injury. In two studies, the level of nephrinuria declined in conjunction with clinical improvement in the patient following immunosuppressive treatment. Currently, there is no published data on the value of measuring urinary nephrin in pediatric patients.
A new nondepolarizing, normokalemic adenosine-lidocaine arrest solution in Krebs-Henseleit buffer with 10-mmol/L glucose was versatile at both 4 degrees C and 28 degrees C to 30 degrees C relative to Celsior, and the addition of 1-mmol/L pyruvate significantly improved cardiac output at warmer arrest temperatures. This new arrest paradigm may be useful in the harvest, storage, and implantation of donor hearts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.