Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH.
The current study first investigates the emulsifying potential of glycine and its N-methylated derivatives N-methylglycine (sarcosine), N,N-dimethylglycine (DMG) and N,N,N-trimethylglycine (betaine) under varying pH conditions. Subsequently, the effect of these test compounds on the membrane integrity of enterotoxigenic Escherichia coli (ETEC) was evaluated. Oil in water emulsions containing each compound show that DMG is a more potent enhancer of emulsification than glycine, sarcosine and betaine under the conditions tested. Flow cytometry was used to investigate whether the emulsifying potential is associated with an effect on ETEC membrane integrity. The bacteria were exposed to each of the test compounds under varying pH conditions and membrane integrity was assessed using the LIVE/DEAD BacLight kit. Results show a membrane deteriorating effect caused by glycine, sarcosine and DMG, but not by betaine. This effect is pH- and time-dependent and has an apparent threshold at pH 9.0. Conventional plate counts confirmed concomitant changes in culturability of the membrane comprised bacteria.
Background Quaternary ammonium compound based disinfectants are commonly used in pig and poultry husbandry to maintain farm hygiene. However, studies have shown that subinhibitory concentrations of these disinfectants may increase antibiotic resistance. Investigation of antibiotic susceptibility is usually assessed via the microbroth dilution method, although this conventional culture-based technique only provides information on the bacteriostatic activity of an antimicrobial agent. Therefore, experiments were performed to investigate the effect of prior benzalkonium chloride (BKC) exposure on the viability of subsequent ciprofloxacin (CIP) treated Escherichia coli. Results Following CIP treatment, bacterial cell counts were significantly higher after exposure to a subinhibitory BKC concentration than without BKC exposure. The flow cytometric results suggested a BKC-dependent onset of membrane damage and loss of membrane potential. Conclusion Our results indicate a lower bactericidal effect of CIP treatment on BKC-exposed E. coli isolates compared to unexposed E. coli isolates.
Metalworking fluids (MWF) are water- or oil-based liquids to cool and lubricate tools, work pieces and machines, inhibit corrosion and remove swarf. One of the major problems in the MWF industry is bacterial growth as bacterial enzymes can cause MWF degradation. In addition, bacteria can form biofilms which hamper the functioning of machines. Last but not least, some bacterial by-products are toxic (e.g. endotoxins) and present potential health risks for metalworking machine operators via the formation of aerosols. Therefore, a novel fast yet accurate analytical method to evaluate and predict the antibacterial capacity of MWF would be an important asset. As such a tool is currently lacking, the present study aimed to develop a protocol based on flow cytometry (FCM) to assess the antibacterial potential of newly developed MWF independent of bacterial growth. Results of this novel method were compared to a biochallenge test currently used in MWF industry and also to traditional plate counts. Our results represent a proof-of-principle that FCM can reliably predict the antibacterial capacity of MWF already within one day of incubation with Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus mirabilis, being substantially faster than the current growth-based methods.
Fungal contamination of metalworking fluids (MWF) is a dual problem in automated processing plants because resulting fungal biofilms obstruct cutting, drilling, and polishing machines. Moreover, some fungal species of MWF comprise pathogens such as Fusarium solani. Therefore, the development of an accurate analytical tool to evaluate conidial viability in MWF is important. We developed a flow cytometric method to measure fungal viability in MWF using F. solani as the model organism. To validate this method, viable and dead conidia were mixed in several proportions and flow was cytometrically analyzed. Subsequently, we assessed the fungicidal activity of two commercial MWF using flow cytometry (FCM) and compared it with microscopic analyses and plating experiments. We evaluated the fungal growth in both MWF after 7 days using quantitative PCR (qPCR) to assess the predictive value of FCM. Our results showed that FCM distinguishes live from dead conidia as early as 5 h after exposure to MWF, whereas the microscopic germination approach detected conidial viability much later and less accurately. At 24 h, microscopic analyses of germinating conidia and live/dead analyses by FCM correlated well, although the former consistently underestimated the proportion of viable conidia. In addition, the reproducibility and sensitivity of the flow cytometric method were high and allowed assessment of the fungicidal properties of two commercial MWF. Importantly, the obtained flow cytometric results on viability of F. solani conidia at both early time points (5 h and 24 h) correlated well with fungal biomass measurements assessed via a qPCR methodology 7 days after the start of the experiment. IMPORTANCE This result shows the predictive power of flow cytometry (FCM) in assessing the fungicidal capacity of MWF formulations. It also implies that FCM can be implemented as a rapid detection tool to estimate the viable fungal load in an industrial processing matrix (MWF).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.