We present an automatic agave detection method for counting plants based on aerial data from a UAV (Unmanned Aerial Vehicle). Our objective is to autonomously count the number of agave plants in an area to aid management of the yield. An orthomosaic is obtained from agave plantations, which is then used to create a database. This database is in turn used to train a Convolutional Neural Network (CNN). The proposed method is based on computer image processing, and the CNN increases the detection performance of the approach. The main contribution of the present paper is to propose a method for agave plant detection with a high level of precision. In order to test the proposed method in a real agave plantation, we develop a UAV platform, which is equipped with several sensors to reach accurate counting. Therefore, our prototype can safely track a desired path to detect and count agave plants. For comparison purposes, we perform the same application using a simpler algorithm. The result shows that our proposed algorithm has better performance reaching an F1 score of 0.96 as opposed to 0.57 for the Haar algorithm. The obtained experimental results suggest that the proposed algorithm is robust and has considerable potential to help farmers manage agave agroecosystems.
This paper presents how the nested saturation control introduced in Teel (1992) can be modified to stabilise the model of the Planar Vertical Take-Off and Landing (PVTOL) system. A particular choice of the amplitudes of the nested saturations controller is given such that global stability of the closed loop system is obtained. The proof is given in detail. Numerical simulations illustrate the performance of the proposed control algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.