The Major Temporal Arcade (MTA) is a critical component of the retinal structure that facilitates clinical diagnosis and monitoring of various ocular pathologies. Although recent works have addressed the quantitative analysis of the MTA through parametric modeling, their efforts are strongly based on an assumption of symmetry in the MTA shape. This work presents a robust method for the detection and piecewise parametric modeling of the MTA in fundus images. The model consists of a piecewise parametric curve with the ability to consider both symmetric and asymmetric scenarios. In an initial stage, multiple models are built from random blood vessel points taken from the blood-vessel segmented retinal image, following a weighted-RANSAC strategy. To choose the final model, the algorithm extracts blood-vessel width and grayscale-intensity features and merges them to obtain a coarse MTA probability function, which is used to weight the percentage of inlier points for each model. This procedure promotes selecting a model based on points with high MTA probability. Experimental results in the public benchmark dataset Digital Retinal Images for Vessel Extraction (DRIVE), for which manual MTA delineations have been prepared, indicate that the proposed method outperforms existing approaches with a balanced Accuracy of 0.7067, Mean Distance to Closest Point of 7.40 pixels, and Hausdorff Distance of 27.96 pixels, while demonstrating competitive results in terms of execution time (9.93 s per image).
Automating retinal vessel segmentation is a primary element of computer-aided diagnostic systems for many retinal diseases. It facilitates the inspection of shape, width, tortuosity, and other blood vessel characteristics. In this paper, a new method that incorporates Distorted Gaussian Matched Filters (D-GMFs) with adaptive parameters as part of a Deep Convolutional Architecture is proposed. The D-GaussianNet includes D-GMF units, a variant of the Gaussian Matched Filter that considers curvature, placed at the beginning and end of the network to implicitly indicate that spatial attention should focus on curvilinear structures in the image. Experimental results on datasets DRIVE, STARE, and CHASE show state-of-the-art performance with an accuracy of 0.9565, 0.9647, and 0.9609 and a F1-score of 0.8233, 0.8141, and 0.8077, respectively.
Introducción: La alta prevalencia de Diabetes Mellitus tipo 2 en México ha posicionado a la retinopatía diabética como la principal causa de ceguera en adultos en edad productiva en México. Por ello, la detección oportuna de este padecimiento es una tarea prioritaria para el sistema público de salud. En el presente artículo se estudia el desempeño de un nuevo algoritmo para la determinación de la forma de la arcada temporal mayor de la retina, mediante el uso de técnicas de segmentación de imágenes y modelado numérico de curvas.
Método: La metodología propuesta emplea Filtros Gaussianos de Correspondencia que realzan la geometría de los vasos sanguíneos. Posteriormente, la estructura vascular es segmentada mediante la umbralización global de la imagen realzada. Dicha segmentación es utilizada como entrada para construir un modelo numérico de las arcadas temporales superior en inferior, utilizando funciones Spline.
Resultados: La evaluación de desempeño se realizó utilizando 136 imágenes de pixeles. El algoritmo de segmentación automática de venas de la retina mediante el método GMF obtuvo un valor de Accuracy de 0.9852; el algoritmo de modelado numérico dio un resultado de 6.01 pixeles en la métrica de la distancia media al punto más cercano (MDCP). Otro estudio previo reportó 12.33 pixeles. Con respecto al tiempo, se reportó un tiempo promedio de 10.65 segundos por imagen.
Discusión: El método propuesto fue capaz de realizar eficientemente el modelado numérico de las arcadas temporales en imágenes de fondo de ojo. Los resultados demuestran que este método es una herramienta computacional útil para el diagnóstico de alteraciones en la anatomía del ojo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.